A Decomposition-Based Implementation of Search Strategies(3)
时间:2025-03-11
时间:2025-03-11
Search strategies, that is, strategies that describe how to explore search trees, have raised much interest for constraint satisfaction in recent years. In particular, limited discrepancy search and its variations have been shown to achieve significant imp
DecompositionforSearchStrategies 353
bytheircomputationpathsand,possibly,someotherinformation.Thisimple-mentationmayyieldsigni cantimprovementsinef ciencyovertheiterativeimplementationforsomeapplications.
Thisarticleismotivatedbytheobservationthatanincreasingnumberofapplicationsusesophisticated,highlydynamic,searchprocedureswhichmayinvolverandomization(e.g.,Nuijten[1994]),globalcutsornogoods(e.g.,Hooker[2000]andWolsey[1998]),andsemanticbacktracking(e.g.,RefaloandVanHentenryck[1996])tonameonlyafew.Randomizedsearchprocedurestypicallydonotgeneratethesamesearchtree(orsubtree)whenexecutedsev-eraltimes.Globalcutsandnogoodsareconstraintsthataregenerateddy-namicallyduringsearch,arevalidforthewholesearchtree,andareusedtoprunetheremainingsearchspace.Semanticbacktrackingtechniquesusetheconstraintsemanticstoreturn,uponbacktracking,toastatewhichissemanti-callyequivalent(i.e.,ithasthesamesetofsolutions)butmaydifferinitsactualform(e.g.,adifferentlinearprogrammingbasis).Thistrendofusingadvancedsearchproceduresislikelytocontinueandtogrow,especiallywiththeinte-grationofconstraintandintegerprogramming(e.g.,ElSakkoutandWallace
[2000],Hooker[2000],Hookeretal.[2001],Refalo[1999],andVanHentenryck
[1999])whichopensnewopportunitiesforheuristics.Unfortunately,thesedy-namictechniquesraisefundamentalchallengesforrecomputation-basedim-plementationsofsearchstrategies.Indeed,recomputationreliesontheabilitytoexecutethesearchprocedureintheexactsamecomputationstateswhichismuchhardertoachieveinpresenceofthesefeatures.Forinstance,random-izedsearchprocedurescannotbeusedduringrecomputation,whichmustbedeterministic.Globalcutsandnogoodschangetheconstraintstoredynami-cally;hencedynamicheuristics,whichareprominentlyusedincombinatorialoptimization,maybehavedifferentlyduringrecomputationduetotheseaddi-tionalconstraints.Similarly,semanticbacktrackingmaychangethebehaviorofheuristicsbasedonlinearrelaxations(e.g.,ElSakkoutandWallace[2000]).Asaconsequence,naiveimplementationsbasedonrecomputationbecomein-completeormaymissgoodsolutions,whilecorrectimplementationsmaysig-ni cantlyincreasethememoryrequirementsanddestroythegenericityoftheimplementation.
Toremedytheselimitations,thisarticlepresentsanovel,decomposition-based,implementationofLDSinparticular,andofsearchstrategiesingeneral.Thekeyideaoftheimplementationistoviewthesearchprocedureas(implic-itly)specifyingaproblemdecompositionscheme(asinFreuderandHubbe
[1995])insteadofasearchtree.Byadoptingthismore“semantic”viewpoint,theimplementationavoidsthepitfallsofrecomputation.Inparticular,itcom-binestheruntimeef ciencyofrecomputation-basedschemeswhileretainingtherobustnessoftraditionaliterativeimplementations.Experimentalresultsonjob-shopschedulingproblemsdemonstratethepotentialofthenewscheme.Surprisingly,decomposition-basedimplementationsmaysigni cantlyoutper-formrecomputation-basedschemesonthesebenchmarks.
Therestofthisarticleisorganizedasfollows:Sinceoneoftheobjectivesofthearticleistoillustratetheadvantagesandinconvenientsofvariousapproaches,itisnecessarytopresentthealgorithmsatsomelevelofdetail.
ACMTransactionsonComputationalLogic,Vol.5,No.2,April2004.
…… 此处隐藏:1365字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:高职院校学生“资助育人”新模式
下一篇:复合风管制作方法