灰度阀值变换及二值化
时间:2025-04-19
时间:2025-04-19
0x Tf x 255x T
当图像的像素点的灰度大于T的时候,设置这个点为全黑,要不然为全白。这样可以只选择我们感兴趣的领域。
im2bw(I,level); %阈值法从灰度图、RGB图创建二值图。level为人工设定阈值(threshold value),范围为[0 ,1]
最大类间方差法(OTSU算法)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大律法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。
在Matlab中, graythresh函数使用最大类间方差法获得图像的阈值。
(注意标点‘‘要换一下)
I = imread(‘beauty_yellowflowers.jpg’);
thresh= graythresh(I);%自适应设置阀值
bw1 = im2bw(I, thresh);
bw2 = im2bw(I, 130/255);%手工设置阀值
subplot(1,3,1);imshow(I);title(‘original’
)
subplot(1,3,2);imshow(bw1);title(‘autoset_thresh’);
subplot(1,3,3);imshow(bw2); title(‘thresh=130’);
最小分类错误全局二值化算法 (kittlerMet算法)
函数源代码: function imagBW = kittlerMet(imag)
% KITTLERMET binarizes a gray scale image 'imag' into a binary image
% Input:
% imag: the gray scale image, with black foreground(0), and white
% background(255).
% Output:
% imagBW: the binary image of the gray scale image 'imag', with kittler's
% minimum error thresholding algorithm.
% Reference:
% J. Kittler and J. Illingworth. Minimum Error Thresholding. Pattern
% Recognition. 1986. 19(1):41-47
MAXD = 100000;
imag = imag(:,:,1);
[counts, x] = imhist(imag); % counts are the histogram. x is the intensity level. GradeI = length(x); % the resolusion of the intensity. i.e. 256 for uint8.
J_t = zeros(GradeI, 1); % criterion function
prob = counts ./ sum(counts); % Probability distribution
meanT = x' * prob; % Total mean level of the picture
% Initialization
w0 = prob(1); % Probability of the first class
miuK = 0; % First-order cumulative moments of the histogram up to the kth level. J_t(1) = MAXD;
n = GradeI-1;
for i = 1 : n
w0 = w0 + prob(i+1);
miuK = miuK + i * prob(i+1); % first-order cumulative moment
if (w0 < eps) || (w0 > 1-eps)
J_t(i+1) = MAXD; % T = i
else
miu1 = miuK / w0;
miu2 = (meanT-miuK) / (1-w0);
var1 = (((0 : i)'-miu1).^2)' * prob(1 : i+1);
var1 = var1 / w0; % variance
var2 = (((i+1 : n)'-miu2).^2)' * prob(i+2 : n+1);
var2 = var2 / (1-w0);
if var1 > eps && var2 > eps % in case of var1=0 or var2 =0
J_t(i+1) = 1+w0 * log(var1)+(1-w0) * log(var2)-2*w0*log(w0)-2*(1-w0)*log(1-w0); else
J_t(i+1) = MAXD;
end
end
end
minJ = min(J_t);
index = find(J_t == minJ);
th = mean(index);
th = (th-1)/n
imagBW = im2bw(imag, th);
% figure, imshow(imagBW), title('kittler binary');
MATLAB程序:
I = imread('beauty_yellowflowers.jpg');
imagSW = kittlerMet(I);%Kittler 算法
bw1 = im2bw(I, 130/255);%手工设置阀值
subplot(1,3,1);imshow(I);title('original');
subplot(1,3,2);imshow(imagSW);title('kittler binary');
subplot(1,3,3);imshow(bw1); title('thresh=130');
结果:
Niblack二值化算法:
Niblack二值化算法是比较简单的局部阈值方法,阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平均灰度值,v是该区域的标准差,k是一个系数。matlab程序如下:
I = imread(' beauty_yellowflowers.jpg ');
I = rgb2gray(I);
w = 2;%
max = 0;
min = 0;
[m,n] = size(I);
T = zeros(m ,n );
%
for i = (w + 1):(m - w)
for j = (w + 1):(n - w)
sum = 0;
for k = -w:w
for l = -w:w
sum = sum + uint32(I(i + k,j + l));
end
end
average = double(sum) /((2*w+1)*(2*w+1));
s = 0;
for k = -w:w
for l = -w:w
s = s + (uint32(I(i + k,j average)*(uint32(I(i + k,j + l)) - average);
end
end
s= sqrt(double(s)/((2*w+1)*(2*w+1))); + l)) -
T(i,j) = average + 0.2*s;
end
end
for i = 1:m
for j = 1:n
if I(i,j) > T(i,j)
I(i,j) = uint8(255);
else
I(i,j) = uint8(0);
end
end
end
imshow(I);
此种算法速度很慢,一直都没等到结果,也有可能是程序中有死循环,,费解
改进的算法如下:(也挺费时间的,效果不好)
I = imread(' beauty_yellowflowers.jpg ');
I = rgb2gray(I);
[m,n] = size(I);
block = 10;
ver = floor(m/block);
hor = floor(n/block);
T = zeros(m,n);
for b_ver = 1:block
for b_hor = 1: block
% T((ver * (b_ver - 1)+1) : (ver *b_ver),(hor *(b_hor - 1) +
1):(hor*b_hor)) = otsu(I((ver * (b_ver - 1)+1) : (ver *b_ver),(hor *(b_hor - 1) + 1):(hor*b_hor)));
t = 0;
for i = (ver * (b_ver - 1)+1) : (ver * b_ver)
for j = (hor * (b_hor - 1) + 1):(hor * b_hor) t = t + uint32(I(i,j));
end
end
t = double(t)/(ver * hor);
std_deviation = 0;
for i = (ver * (b_ver - 1)+1) : (ver * b_ver)
for j = (hor * (b_hor - 1) + 1):(hor * b_hor)
std_deviation = std_deviation + (uint32(I(i,j)) - t)*(uint32(I(i,j)) - t);
end
end
std_deviatio …… 此处隐藏:2328字,全部文档内容请下载后查看。喜欢就下载吧 ……