Quantum phase transitions in an effective Hamiltonian fast a(3)
时间:2026-01-18
时间:2026-01-18
An effective Hamiltonian describing interaction between generic "fast" and a "slow" systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the "
Becausethee ectiveHamiltonian(6)isdiagonalfor
the
operators
of
theY
fastsystem,wemayprojectitoutontoaminimalenergyeigenstateoftheYsystem,|ψ0 Y,substitutingY0byitseigenvaluey0:Y0|ψ0 Y=y0|ψ0 Y.The rstordere ectthencomesfrom(X++X )2the,whiletheterm~(X++X )4
term~
de nesa nestructureofthee ectivepotential,obtainedafterprojectingthee ectiveHamiltonian(6)ontothestate|ψ0 Y.
Itisimportanttostressthat,althoughδisasmallparameter,thee ectoftheterms~δn,n≥1,couldbeinprinciplecomparablewiththemaindiagonaltermω1X0,especiallyifthealgebraofXoperatorsdescribeabigsubsystem,i.e.,largespinorbigphotonnumber.Inthiscasenon-triviale ectssuchasQPTmayoccur.Now,wemayproceedwithanalysisofthee ectiveHamiltonian(6)inthethermodynamiclimit,focusingonthepossiblebifurcationofthegroundstate.
III.
EXAMPLES
A.
Atom- eldinteraction(Dickemodel)
TheHamiltoniangoverningtheevolutionofAsym-metricallypreparedtwo-levelatomsinteractingwithasinglemodeofquantized eldhastheform
H=ω1n +ω2Sz+g(S++S ) a +a
,(8)wheren =a aandSz,±aregeneratorsofthe(A+1)-dimensionalrepresentationofthesu(2)algebra.
1.E ective elddynamics
Firstletussupposethattheatomsformafastsubsys-temsothat,
X0=n ,X+=a ,X =a,
Y0=Sz,Y±=S±,
andthus,φy(Y0)=C2 S2
Cz+Sz
andφx(X0)=n ,where
2=A/2(A/2+1)istheeigenvalueoftheCasimiropera-torofthesu(2)algebra(integralofmotioncorrespondingtotheatomicsubsystem).
Projectingthee ectiveHamiltonianontothemini-mumenergystateoftheatomicsystem|0 at,sothaty0= A/2,weobtainthefollowinge ectiveHamilto-nianforthe eldmode:
Heff=ω 1n Agδ
a+a 2+gAδ3 a+a 4,(9)whereω 1=ω1(1 2Aδ2).
Rewriting(9)intermsofpositionandmomentumop-erators,
Heff=
ω 1
3
2
cosθ,Sx→
A
2
sinφsinθ,
andthusrewritethee ectiveHamiltonian(11)asaclas-sicalHamiltonianfunction,
Hcl=
A
1 ξ 2for
ξ>1.ItisworthnotingthattheglobalminimumofHclatξ<1convertsintoalocalmaximumforξ>1,sothatHcl(θ )<Hcl(θ ).Thismeansthattheatoms,initiallypreparedattheminimumoftheHamiltonianfunction,spontaneouslychangetheirgroundstateenergyatsomevalueofthesystem’sparameters.Classically,
…… 此处隐藏:237字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:柴油发电机日常点检表
下一篇:c语言课程设计学生成绩管理系统