拉格朗日插值多项式(2)

时间:2026-01-27

拉格朗日插值多项式

尽管满足插值条件Pn(xi)=yi (i=0,1,2,…,n) (1) 的n次插值多项式是唯一的,然而它的表达式却可以有多种形式。如果取满足条件

1 i=k

lk(xi)= (i=0,1,2,…,n) (2) 0 i≠k

的一组n次的代数多项式l0(x)、l1(x)、…、ln(x)作为上述线性空间的基,容易看出

y0l0(x)+ y1l1(x)+ …+ynln(x)=∑yklk(x) (3)

必是一个不高于n次的代数多项式,而且它在节点x0、x1、…、xn 上的值依次是 y0、y1、…、yn也就是说,由n+1个n次代数多项式y0l0(x)、 y1l1(x)、 …、ynln(x)线性生成的多项式(3),就满足插值条件(1)的n次插值多项式。 满足条件(2)的n次代数多项式lk(x)(k=0,1,2…,n),称为在n+1个节点xi (i=0,1,2,…,n)上的n次基本插值多项式;形如(3)的插值多项式称为拉格朗日插值多项式,记作Ln(x),即

(4)

其中基函数

例 给定函数表如下: 试求e0.285的近似值。

附:

#define M 5 struct data {double x; double y; };

main() {int i,j,k;

double x,sum=0,p; struct data z[M];

拉格朗日插值多项式(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219