Matlab的fmincon函数
时间:2026-01-18
时间:2026-01-18
Matlab优化函数fmincon
1.
fmincon是一种局部优化函数,利用目标函数以及约束函数的一阶导数信息,从给的初始点开始,在满足约束的条件下,沿着目标函数下降的方向迭代,最后收敛到局部最优解。约束函数不同,对应的结果当然会不一样,因为一般的多维优化问题总存在很多局部最优解,而fmincon只能找到离给的初始点最近的极小值,在你的问题中,可能在[-5,-6]区间上存在一个极小值,当然也可能是[-6,-7],因此你优化的结果会不同。exitflag是优化结果的标志,exitflag=1说明优化收敛到局部最优解;exitflag=4、5说明你采用的是有效集算法(active-set ),也得到相应的结果;如果exitflag=0那说明你的优化失败了。
2.
fmincon函数,用与解方程和拟合。fmincon可用于局部优化,全局优化。功能强大,若灵活运用能解决很多问题。
局部优化的语句为:X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON)
全局优化的语句为:
opts1 = optimset('Algorithm','interior-point');
opts2 = optimset('Algorithm','sqp');
opts3 = optimset('Algorithm','trust-region-reflective');
opts4 = optimset('Algorithm','active-set');
createOptimProblem('fmincon','objective', FUN, 'x0', X0, ...
'Aineq', A, 'bineq', b, 'Aeq', Aeq, 'beq', beq, 'lb', LB, ...
'ub', UB, 'nonlcon', NONLCON, 'options',opts1)
gs = GlobalSearch;
[x1,fval1] = run(gs,problem1)
3.
X0=[2 2];
A=[1 0.1;-0.1 -1];
B=[4;-2];
Aeq=[];
Beq=[];
LB=[];
UB=[];
NONLCON=[];
options = optimset('Algorithm','active-set');
[X,FVAL,EXITFLAG,OUTPUT]=fmincon(@(x)x(1)^2+x(2)^2,X0,A,B,Aeq,Beq,LB,UB,NONLC ON,options)
结果:
X =
0.1980 1.9802
FVAL =
3.9604
EXITFLAG =
1
OUTPUT =
iterations: 3
funcCount: 12
lssteplength: 1
stepsize: 0.0028
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: 1.9757e-008
constrviolation: 0
message: [1x144 char]
Matlab的fmincon函数(非线性等式/不等式约束优化问题求解)
fmincon函数优化问题
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
fmincon是求解目标fun最小值的内部函数
x0是初值
A b线性不等式约束
Aeq beq线性等式约束
lb下边界
ub上边界
nonlcon非线性约束条件
options其他参数,对初学者没有必须,直接使用默认的即可
优化工具箱提供fmincon函数用于对有约束优化问题进行求解,其语法格式如下:
x=fmincon(fun,x0,A,b)
x=fmincon(fun,x0,A,b,Aeq,beq)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
[x,fval]=fmincon(...)
[x,fval,exitflag]=fmincon(...)
[x,fval,exitflag,output]=fmincon(...)
其中,x,b,beq,lb,和ub为线性不等式约束的下、上界向量,A和Aeq为线性不等式约束和等式约束的系数矩阵矩阵,fun为目标函数,nonlcon为非线性约束函数。
显然,其调用语法中有很多和无约束函数fminunc的格式是一样的,其意义也相同,在此不在重复介绍。对应上述调用格式的解释如下:
x=fmincon(fun,x0,A,b)给定初值x0,求解fun函数的最小值x。fun函数的约束条件为A*x<=b,x0可以是标量或向量。
x=fmincon(fun,x0,A,b,Aeq,beq)最小化fun函数,约束条件为Aeq*x=beq和A*x<=b。若没有不等式线性约束存在,则设置A=[]、b=[]。
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)定义设计变量x的线性不等式约束下界lb和上界ub,使得总是有lb<=x<=ub。若无等式线性约束存在,则令Aeq=[]、beq=[]。
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)在上面的基础上,在nonlcon参数中提供非线性不等式c(x)或等式ceq(x)。fmincon函数要求c(x)<=0且ceq(x)=0。
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)用options参数指定的参数进行最小化。
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)将问题参数P1,P2等直接传递给函数fun和nonlin。若不需要这些变量,则传递空矩阵到A,b,Aeq,beq,lb,ub,nonlcon和options。
[x,fval]=fmincon(...)返回解x处的目标函数值到fval。
[x,fval,exitflag]=fmincon(...)返回exitflag参数,描述函数计算的有效性,意义同无约束调用。
[x,fval,exitflag,output]=fmincon(...)返回包含优化信息的输出参数output。
非线性不等式约束nonlcon的定义方法
该参数计算非线性不等式约束c(x)<=0和非线性等式约束ceq(x)=0。nonlcon参数是一个包含函数名的字符串。该函数可以是M文件、内部文件或MEX文件。它要求输入一个向量x,返回两个变量—解x处的非线性不等式向量c和非线性等式向量ceq。例如,若nonlcon='mycon',则M文件mycon.m须具有下面的形式:
function[c,ceq]=mycon(x)
c=...%计算x处的非线性不等式。
ceq=...%计算x处的非线性等式。
若还计算了约束的梯度,即options=optimset('GradConstr','on')
则nonlcon函数必须在第三个和第四个输出变量中返回c(x)的梯度GC和ceq(x)的梯度Gceq。function[c,ceq,GC,GCeq]=mycon(x)
c=...%解x处的非线性不等式。
ceq=...%解x处的非线性等式。
ifnargout>2%被调用的nonlcon函数,要求有4个输出变量。
GC=...%不等式的梯度 …… 此处隐藏:2370字,全部文档内容请下载后查看。喜欢就下载吧 ……