Compactifications with S-Duality Twists(6)
时间:2025-04-03
时间:2025-04-03
We consider generalised Scherk Schwarz reductions of supergravity and superstring theories with twists by electromagnetic dualities that are symmetries of the equations of motion but not of the action, such as the S-duality of D=4, N=4 super-Yang-Mills cou
representationofGandconsiderthetheoryinD+1dimensionsandworkwiththemetricKij.Thelagrangianis1TL=R 1+HnK∧ Hn(2.11)2
TheactionisinvariantundertherigidGsymmetry
δA→L 1A,δK→LTKL(2.12)
whereLijisaG-transformationintherrepresentation,andthespacetimemetricisinvariant.Inlatersections,wewillbeparticularlyinterestedinthecaseinwhichD+1=2n,butfornowwewillkeepD,narbitrary.
Forexample,inthecaseG=SL(2,R),H=SO(2),therearetwoscalarsinthetheory,whichwewilldenoteφandχ,whichparametrisethescalarcosetSL(2,R)/SO(2).ThematrixV(inthedoubletrepresentationofSL(2,R))isageneralSL(2,R)matrix,whichcanbegiven,intermsofφandχandanon-physicalscalarθthatparameterisestheSO(2)subgroup,by
V=heφ/2
wherehisanSO(2)matrix
h=
Then
K=eφ e0 χ1 φ (2.13)cosθsinθ sinθcosθe 2φ(2.14)
andthelagrangian(2.11)canbewrittenas
L=R 1 1
2e2φdχ∧ dχ 1+χ χ2 χ1.(2.15)
2eφH2∧ H2 χeφH1∧ H2(2.16)
andisindependentofθ.
Wenowreducethelagrangian(2.11)onacirclewithatwistgivenbyamonodromyM=eM∈Gwiththeansatz(1.1).Fortheremainderofthissection,wedistinguishtheD+1-dimensional eldsfromD-dimensionalonesbyahat.ThemetricisinvariantundertheglobalsymmetrygroupsoweusethestandardKaluza-Kleinansatz
ds 2=e2α ds2+e2β (dy+A)2
sothattheEinstein-Hilberttermin(2.11)reducesto
Lg=R 1 1
2
F∧ F.(2.18)(2.17)
下一篇:进口成人用品常见英语单词