Clustering using firefly algorithm Performance study(7)
发布时间:2021-06-07
发布时间:2021-06-07
萤火虫算法
170J.Senthilnathetal./SwarmandEvolutionaryComputation1(2011)164–171
Table7
Table8
Resultsofnatureinspiredtechniquesafter20runsforoptimalclustercentersusing
Table9
ComparisonofclassificationefficiencyforIrisdataset.evaluationiseffectivelyscannediterativelytillalltheparticlesconvergetoanoptimalresulti.e.intheformofclustercenters.IntheFAalgorithm,afireflyparticlemovestowardanotherfireflyparticle,whichhasabetterobjectivefunctionvalue(fitness).Thedistancemovedbythefireflyineachinstanceisgivenbythedistancebetweenthetwofireflyparticles(r).Whenthevalueofrislarge/small,thefireflywillmoveasmall/largedistance.Thiswillaffectthecomputationtimeofthisalgorithm.InPSOeachparticlewillmoveadistancebasedonitspersonalbestandtheglobalbest.InABCeachbeeparticlepositionwillbecomparedtwicewithbestparticleposition.Furthertheclustercentersgeneratedbythesealgorithmisanalyzedusingthedistancesbetweenthegivendataandtheclustercentersarecomputed.Thedataisassignedtotheclustercenter(class)thathastheminimumdistance.Theperformancemeasurewillhelpsustoexaminewhichmethodhasgeneratedtheoptimalclustercenters.
TheclassificationmatrixfortheentireIrisdatasetareshowninTable9.Fromthistable,wecanobservethat,forallthenatureinspiredalgorithms,samplesbelongingtoClass2andClass3aregettingmisclassifiedasClass3andClass2respectively.FortheFAandABCgeneratedoptimalclustercenters,theperformanceofindividualefficiencyofClass2is96%whereasPSOhas92%.TheindividualefficiencyofClass3usingFAis88%whichisbetterincomparisonwiththatofABCandPSOwith72%and74%respectively.Inallthealgorithms,Class1isclassifiedwithoutanymisclassificationandhencehaveindividualefficiencyof100%,asitislinearlyseparableincomparisonwiththatofother2classes.Also,theaverageandoverallefficiencyisbetterinthecaseoftheFAwith94.7%incomparisontoABCandPSOis89.3%and88.7%respectively.Henceitisimportanttoconsidertheindividual,averageandoverallefficiencyinmulti-classclassificationproblemforageneratedclustercenters.
Itisimportanttonotethattheperformanceofclusteringmainlydependsonthesizeandqualityoftrainingdataset.Therearesomemethodsavailableintheliteraturefortheselectionoftrainingdata
set[36].Earlierstudyshowedthattheproperselectionoftrainingdatasetimprovestheperformancemeasure[36].Inourstudy,wehaveselected75%oftrainingdatasetrandomlyandtabulatedtheresultbasedonthemostfavorableperformancemeasurefortheselectedtrainingdataset.
Inoverallformostofthedataset,theFAhasgoodglobalperformance.WecanclaimthatbylookingattheaccuracyandrobustnessofFA,itcanbeusedforclusteringproblemsstudiedinthispaper.
6.Discussionsandconclusions
Thispaperinvestigatesanewnatureinspiredalgorithm—theFAisusedforclusteringandevaluatingitsperformance.TheFAalgorithmiscomparedwithABCandPSOasallthesemethodsareinthesameclassofpopulation-based,natureinspiredoptimizationtechniques.Asinotherpopulation-basedalgorithms,theγperformanceoftheFAdependsonthepopulationsize,β,and.IntheFAalgorithm,afireflyparticlemovetowardanotherfireflyparticle,whichhasabetterobjectivefunctionvalue(fitness).Thedistancemovedbythefireflyineachinstanceisgivenbythedistancebetweenthetwofireflyparticles(r).Theeffectofthevaluesofβandγarediscussedin[18].Whenthevalueofrislarge/small,thefireflywillmoveasmall/largedistance.Thiswillaffectthecomputationtimeofthisalgorithm.InPSOeachparticlewillmoveadistancebasedonitspersonalbestandtheglobalbest.InABCeachbeeparticlepositionwillbecomparedtwicewithbestparticleposition.IntheFAalgorithmonlythedistanceisnecessaryforthemovement.Theperformancemeasure(CEP),willhelpsustoexaminewhichmethodhasgeneratedtheoptimalclustercenters.Theclusteringtaskof13benchmarkdatasetsareaccomplishedsuccessfullybytheprocedureofpartitionalclusteringusingare-centnatureinspiredtechnique—FireflyAlgorithm(FA).Clusteringisanimportanttechniquetoidentifyhomogeneousclusters(orclasses)suchthatthepatternsforaclustercentershareahighdegreeofaffinitywhilebeingverydissimilarforotherclusters.TheperformanceoftheFAusingclassificationerrorpercentageiscomparedwithothertwonatureinspiredtechniques—ArtificialBeeColony(ABC)andParticleSwarmOptimization(PSO)andotherninemethodswhicharewidelyusedbytheresearchers.Theper-formancemeasureusingclassificationefficiency—individual,aver-ageandoverallefficiencyoftheFAisanalyzedusing13benchmarkproblems.Fromtheresultsobtained,wecanconcludethattheFAisanefficient,reliableandrobustmethod,whichcanbeappliedsuccessfullytogenerateoptimalclustercenters.Acknowledgments
Theauthorswouldliketothankthereviewersfortheircommentswhichwereusefulduringtherevisionofthisstudy.References
[1]M.R.Anderberg,ClusterAnalysisforApplication,AcademicPress,NewYork,
1973.
[2]J.A.Hartigan,ClusteringAlgorithms,Wiley,NewYork,1975.
[3]P.A.Devijver,J.Kittler,PatternRecognition:AStatisticalApproach,Prentice-Hall,London,1982.
[4]A.K.Jain,R.C.Dubes,AlgorithmsforClusteringData,Prentice-Hall,Englewood
Cliffs,1988.
[5]H.Frigui,R.Krishnapuram,Arobustcompetitiveclusteringalgorithmwith
applicationsincomputervision,IEEETransactionsonPatternAnalysisandMachineIntelligence21(1999)450–465.
[6]Y.Leung,J.Zhang,Z.Xu,Clusteringbyscale-spacefiltering,IEEETransactions
onPatternAnalysisandMachineIntelligence22(2000)1396–1410.
[7]D.Chris,XiaofengHe,Clustermergingandsplittinginhierarchicalclustering
algorithms,in:Proc.IEEEICDM,2002,pp.1–8.
[8]B.Mirkin,MathematicalClassificationandClustering,KluwerAcademic
Publishers,Dordrecht,1996.
[9]D.Karaboga,C.Ozturk,Anovelclusterapproach:ArtificialBeeColony(ABC)
algorithm,AppliedSoftComputing11(1)(2010)652–657.