Clustering using firefly algorithm Performance study
发布时间:2021-06-07
发布时间:2021-06-07
萤火虫算法
SwarmandEvolutionaryComputation1(2011)
164–171
ContentslistsavailableatSciVerseScienceDirect
SwarmandEvolutionaryComputation
journalhomepage:
/locate/swevo
Regularpaper
Clusteringusingfireflyalgorithm:Performancestudy
J.Senthilnath,S.N.Omkar ,V.Mani
DepartmentofAerospaceEngineering,IndianInstituteofScience,Bangalore,India
articleinfoabstract
AFireflyAlgorithm(FA)isarecentnatureinspiredoptimizationalgorithm,thatsimulatestheflashpatternandcharacteristicsoffireflies.Clusteringisapopulardataanalysistechniquetoidentifyhomogeneousgroupsofobjectsbasedonthevaluesoftheirattributes.Inthispaper,theFAisusedforclusteringonbenchmarkproblemsandtheperformanceoftheFAiscomparedwithothertwonatureinspiredtechniques—ArtificialBeeColony(ABC),ParticleSwarmOptimization(PSO),andotherninemethodsusedintheliterature.ThirteentypicalbenchmarkdatasetsfromtheUCImachinelearningrepositoryareusedtodemonstratetheresultsofthetechniques.Fromtheresultsobtained,wecomparetheperformanceoftheFAalgorithmandconcludethattheFAcanbeefficientlyusedforclustering.
CrownCopyright©2011PublishedbyElsevierLtd.Allrightsreserved.
Articlehistory:
Received10February2011Receivedinrevisedform5May2011
Accepted2June2011
Availableonline30June2011Keywords:ClusteringClassificationFireflyalgorithm
1.Introduction
Clusteringisanimportantunsupervisedclassificationtech-nique,whereasetofpatterns,usuallyvectorsinamulti-dimensionalspace,aregroupedintoclusters(orgroups)basedonsomesimilaritymetric[1–4].Clusteringisoftenusedforavari-etyofapplicationsinstatisticaldataanalysis,imageanalysis,dataminingandotherfieldsofscienceandengineering.
Clusteringalgorithmscanbeclassifiedintotwocategories:hierarchicalclusteringandpartitionalclustering[5,6].Hierarchicalclusteringconstructsahierarchyofclustersbysplittingalargeclusterintosmalleronesandmergingsmallerclusterintotheirnearestcentroid[7].Inthis,therearetwomainapproaches:(i)thedivisiveapproach,whichsplitsalargerclusterintotwoormoresmallerones;(ii)theagglomerativeapproach,whichbuildsalargerclusterbymergingtwoormoresmallerclusters.Ontheotherhandpartitionalclustering[8,9]attemptstodividethedatasetintoasetofdisjointclusterswithoutthehierarchicalstructure.Themostwidelyusedpartitionalclusteringalgorithmsaretheprototype-basedclusteringalgorithmswhereeachclusterisrepresentedbyitscenter.Theobjectivefunction(asquareerrorfunction)isthesumofthedistancefromthepatterntothecenter[6].Inthispaperweareconcernedwithpartitionalclusteringforgeneratingclustercentersandfurtherusingtheseclustercenterstoclassifythedataset.
Apopularpartitionalclusteringalgorithm—k-meansclustering,isessentiallyafunctionminimizationtechnique,wheretheobjectivefunctionisthesquarederror.However,themain
Correspondingauthor.
E-mailaddress:omkar@aero.iisc.ernet.in(S.N.Omkar).
drawbackofk-meansalgorithmisthatitconvergestoalocalminimafromthestartingpositionofthesearch[10].Inordertoovercomelocaloptimaproblems,manynatureinspiredalgorithmssuchas,geneticalgorithm[11],antcolonyoptimization[12],artificialimmunesystem[13],artificialbeecolony[9],andparticleswarmoptimization[14]havebeenused.Recently,efficienthybridevolutionaryoptimizationalgorithmsbasedoncombiningevolutionarymethodsandk-meanstoovercomelocaloptimaproblemsinclusteringareused[15–17].
TheFireflyAlgorithm(FA)isarecentnatureinspiredtech-nique[18],thathasbeenusedforsolvingnonlinearoptimizationproblems.Thisalgorithmisbasedonthebehaviorofsocialinsects(fireflies).Insocialinsectcolonies,eachindividualseemstohaveitsownagendaandyetthegroupasawholeappearstobehighlyorganized.Algorithmsbasedonnaturehavebeendemonstratedtoshoweffectivenessandefficiencytosolvedifficultoptimizationproblems.Aswarmisagroupofmulti-agentsystemssuchasfire-flies,inwhichsimpleagentscoordinatetheiractivitiestosolvethecomplexproblemoftheallocationofcommunicationtomultipleforagesitesindynamicenvironments.
Inthisstudy,theFireflyAlgorithm(FA),whichisdescribedbyYang[18]fornumericaloptimizationproblems,isappliedtoclustering.TostudytheperformanceoftheFAtoclusteringproblems,weconsiderthestandardbenchmarkproblems(13typicaltestdatabases)thatareavailableintheliterature[9,14].TheperformanceoftheFAalgorithmonclusteringiscomparedwiththeresultsofothernatureinspiredtechniques—ArtificialBeeColony(ABC)[19]andParticleSwarmIntelligence(PSO)[20]algorithmonthesametestdatasets[9,14].TheFA,ABCandPSOalgorithmsareinthesameclassofpopulation-based,natureinspiredoptimizationtechniques.Hence,wecomparetheperformanceoftheFAalgorithmwithABCandPSOalgorithms.
2210-6502/$–seefrontmatterCrownCopyright©2011PublishedbyElsevierLtd.Allrightsreserved.doi:10.1016/j.swevo.2011.06.003