考虑抖振影响的大跨度桥梁静风稳定性分析(6)
发布时间:2021-06-07
发布时间:2021-06-07
考虑抖振影响的大跨度桥梁静风稳定性分析
1.41.2
工 程 力 学 101
竖向位移/m
0.8
0.60.40.2
1
-0.2
t/s
图16 东海大桥230m/s风速下跨中竖向位移时程 Fig.16 Time history of vertical displacement of east coast
bridge in middle span under 230m/s wind speed
3 结语
从以上西堠门大桥与东海大桥的静风稳定计算结果可知,忽略抖振响应的影响得出的静风失稳临界风速是偏于保守的。对于超大跨度的悬索桥,由于沿桥跨方向脉动风空间相关性的减弱,可能会大幅度地提高静力扭转发散的临界风速,甚至完全防止静风失稳的可能性,因此,对于超大跨度悬索桥,在均匀流下按静风稳定验算满足设计要求后可以不再考虑抖振响应对扭转发散的影响。从本文对西堠门大桥悬索桥(主跨1650m)与东海大桥斜拉桥(主跨420m)的静风稳定计算结果也可以看出,抖振响应对大跨度悬索桥静风稳定性影响显著,而对跨度较小的斜拉桥,其影响并不十分明显。 参考文献:
[1] Simiu E, Scanlan R H. Wind Effects on Structures—An Introduction to Wind Engineering [M]. Third Edition,
1996.
[2] Boonyapinyo V, Yamada H, miyata T. Wind-induced
nonlinear lateral-torsional buckling of cable-stayed bridges [J]. Journal of Structural Engineering, ASCE, 1994, 120(2): 486~506.
[3] Cheng Jin, Jiang Jianjing, Xiao Rucheng, Xiang Haifan,
Nonlinear aerostatic stability analysis of Jiang Yin suspension bridge [J]. Engineering Structures, 2002, (24): 773~781.
[4] Scanlan R H, Jones N P. Aeroelastic analysis of
cable-stayed bridges [J]. J. of structure engineering, ASCE, 1990, 116(2): 279~297.
[5] Katsuchi H, Jones N P, Scanlan R H, Akiyama H. A study
of mode coupling in flutter and buffeting of the Akashi-Kaikyo bridge [J]. J. Struct. Mech. And Earthquake Engrg., JSCE, 1998, 15(2): 281~291.
[6] Katsuchi Hiroshi, Jones N P, Scanlan R H. Multimode
coupled flutter and buffeting analysis of the AKASHI-KAIKYO bridge [J]. Journal of Struct. Engrg., ASCE, 1999, 125(1): 60~70.
[7] George Deodatis, Simulation of ergodic multivariate
stochastic processes [J]. J. Engineering Mechanics, ASCE, 1996, 122(8): 778~787.
[8] Hsiao K M, Horng H J, Chen Y R. A corotational
procedure that handle large rotations of spatial beam structures [J]. Comput. Struct., 1987, (27): 769~781.
[9] Bathe K J, Bolourchi S. Large displacement analysis of
three-dimensional beam structures [J]. International Journal of Numerical and Mechanic Engineering, 1979, 14: 961~986.
[10] Klaus-Jurgen Bathe. Finite element procedures [M].
Prentice-Hall, Englewood Cliffs, New Jersey, 1996.
(上接第121页)
[8] 廖红建, 苏立君, 白子博明, 赤石胜. 次固结沉降对压
缩时间曲线的影响研究[J]. 岩土力学, 2002, 23(5): 536~540.
Liao Hongjian, Su Lijun, Shirako Hiroaki, Akaishi Masaru. Research on influence of secondary consolidation on compression-time curve [J]. Rock and Soil Mechanics, 2002, 23(5): 536~540. (in Chinese)
[9] Crawford C B. Interpretation of the consolidation test [J].
Journal of the Soil Mechanics and Foundations Division, ASCE, 1964, (90): 87~102.
[10] Leroueil S. Compressibility of clay :foundational and
practical aspects [J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(7): 534~543.
[11] Imai G, Tang Y X. A constitutive equation of
one-dimensional consolidation derived from interconnected tests [J]. Soils and Foundation, 1992, 32(2): 83~96.
[12] Yin J H, Graham J, Clark I, Gao Longjun. Modeling
unanticipated pore-water pressures in soft clays [J]. Can. Geotech. J., 1994, 31(5): 773~778.
上一篇:模板工程施工工艺标准