推荐系统netflix获奖算法(7)
发布时间:2021-06-07
发布时间:2021-06-07
赢得netflix推荐系统大奖的算法
VI.EXTENSIONSTORESTRICTEDBOLTZMANN
MACHINES
A.RBMswithconditionalvisibleunits
WeextendedtheRestrictedBoltzmannMachines(RBM)modelsuggestedby[12].Theoriginalworkshowedasigni -cantperformanceboostbymakingthehiddenunitsconditionalonwhichmoviesthecurrentuserhasrated.Wehavefoundthatasimilarlysigni cantperformanceboostisachievedbyconditioningthevisibleunits.
Intuitivelyspeaking,eachoftheRBMvisibleunitscorre-spondstoaspeci cmovie.Thustheirbiasesrepresentmovie-biases.However,weknowthatotherkindsofbiasesaremoresigni ly,user-bias,single-dayuserbias,andfrequency-basedmoviebias.Therefore,weaddthosebiasestothevisibleunitsthroughconditionalconnections,whichdependonthecurrentlyshownuseranddate.
Letusborrowtheoriginalnotation[12],whichusesaconditionalmultinomialdistributionformodelingeachcolumnoftheobservedvisiblebinaryratingmatrixV:
p(vkexp(bki+∑Fj=1hjWiki
=1|h)=
j)∑l=1exp(bl
i+∑j=1hjWilj)
(19)
Weextendthisconditionaldistributionasfollows.Letthecurrentinstancerefertouseruanddatet.Weaddauser/datebiasterm:p(vkexp(bkut+bku+bki+∑Fj=1hjWiki
=1|h,u,t)=
j)∑l=1exp(blut+blu+bli+∑j=1hjWilj)
(20)
wherebkuisauser-speci cparameter,andbkruleis
utisauser×date-speci cvariable.Thelearning bku=ε1( vki data vki T), bkut=ε2( vki data vki T).
Wehavefounditconvenientheretodeviatefromthemini-batchlearningschemesuggestedin[12],andtolearnbkandbkweupdateeachu
immediatelyutinafullyonlinemanner.Thatis,afterobservingacorrespondingtraininginstance.Theusedlearningratesare:ε1=0.0025andε2=0.008.Noticethatunlessotherwisestated,weusethesameweightdecaysuggestedintheoriginalpaper,whichis0.001.
Consideringthesigni canteffectoffrequencies,wecanfurtherconditiononthemhere.Letthecurrentinstancerefertouseruanddatetwithassociatedfrequencyf.Theresultingconditionaldistributionisasfollows:
p(vkexp(bkif+bkut+bku+bki+∑Fj=1hjWikj)
i
=1|h,u,t,f)=
∑l=1exp(bif+but+blu+bi+∑j=1hjWij)
(21)
wherebkrulewillifisamovie×frequency-speci cvariable.Itslearning
be
bkif=ε3( vki data vk
i T).
whereε3=0.0002.Onlinelearningisusedaswell.
Whenusingfrequencieswealsoemployedthefollowingmodi cationtothevisible-hiddenweights,whichwasbroughttoourattentionbyourcolleaguesatthePragmaticTheory
7
team.InsteadofusingtheoriginalweightsWikj,wewilluse
frequency-dependentweightsWikjf,whicharefactoredas
Wikjf=Wikj·(1+Cfj).
WeuseonlinelearningforthenewparametersCfj,withlearningrateof1e-5.
Asitturnedout,thisextensionoftheweightsbarelyimprovesperformancewhenfrequency-biasesarealreadypresent,whilebeingsomewhatonerousintermsofrunningtime.Thus,weareunlikelytorecommendit.Still,itispartofourfrequency-awareRBMimplementation.B.RBMswithday-speci chiddenunits
2Motivated
bytheday-speci cuserfactor(14),wealso
triedtocreateday-speci cRBMhiddenunits.OntopoftheFhiddenunits,wealsoaddGday-speci cunits.Forauserthatratedonrdifferentdays,wecreaterparallelcopiesoftheGday-speci cunits.Allthoseparallelcopiessharethesamehidden-visibleweights,hiddenbiases,andconditionalconnections.Also,eachparallelcopyisconnectedonlytothevisibleunitscorrespondingtotheratingsgiveninitsrespectiveday.
Toputthisformally,foraday-speci chiddenunitindexedbyj,withacorrespondingratingdatet,weusetheindicatorvectorrt∈{0,1}ntodenotewhichmoviesthecurrentuserratedondatet.Then,theBernoullidistributionformodelinghiddenuserfeaturesbecomesn
n
p(hj=1|V,rt)=σ(bj+∑
riviWik
j+
Dij).
(22)
i=1k∑
5
tk=1
i∑rit=1
Inourimplementationweusedthismodeltogetherwith
thefrequency-biasedRBM.Allparametersassociatedwiththeday-speci cunitswerelearnedinmini-batches,astheirnonday-speci ccounterparts,butwithalearningrateof0.005andaweightdecayof0.01.Resultswerenotencouraging,andfurtherre nementisstillneeded.Stillasinglevariantofthisschemecontributestotheblend.C.What’sintheblend?
Firstanoteonover-training.OurparametersettingmadetheRBMtypicallyconvergeatlowestQuizRMSEwith60–90iterations.However,fortheoverallblenditwasbene cialtocontinueover ttingthetrainingset,andlettheRBMrunformanyadditionaliterations,aswillbeseeninthefollowing.WeincludeintheblendfourvariantsoftheRBMmodelfollowing(20):
1)F=200,#iterations=52,RMSE=0.89512)F=400,#iterations=62,RMSE=0.89423)F=400,#iterations=82,RMSE=0.89444)F=400,#iterations=100,RMSE=0.8952
TherearealsotwovariantsoftheRBMwithfrequencies(21):
1)F=200,#iterations=90,RMSE=0.89282)F=200,#iterations=140,RMSE=0.8949
2An
ideadevelopedtogetherwithMartinPiotte
上一篇:火车票售票管理系统
下一篇:网店加盟、实体加盟合同规范。