推荐系统netflix获奖算法(5)
发布时间:2021-06-07
发布时间:2021-06-07
赢得netflix推荐系统大奖的算法
IV.MATRIXFACTORIZATIONWITHTEMPORALDYNAMICSMatrixfactorizationwithtemporaldynamicswasalreadydescribedinlastyear’sProgressReport[3],orwithmoredetailinaKDD’09paper[8].ThemajorenhancementforthisyearistheincorporationoftheimprovedbaselinepredictorsdescribedinSec.III.
Thefullmodel,whichisknownastimeSVD++[8]isbasedonthepredictionrule
r ui=bui+qTi
pu(tui)+|N(u)| 1
yj
.(13)
j∈∑
N(u)
Here,theexactde nitionofthetime-dependentbaseline
predictor,bui,follows(10).
AsistypicalforaSVD++model[7],weemploytwosetsofstaticmoviefactors:qi,yi∈Rf.The rstset(theqis)iscommontoallfactormodels.Thesecondset(theyis)facilitatesapproximatingauserfactorthroughthesetofmoviesratedbythesameuser,usingthenormalized
sum|N(u)| 1
∑j∈N(u)yj.Differentnormalizationsoftheform|N(u)| αcouldbeemployed.Ourchoiceofα=1 xingthevarianceofthesum(seealso[7]formoreattemptsatintuitiononthischoice.)
Userfactors,pu(t)∈Rfaretime-dependent.Wemodeledeachofthecomponentsofpu(t)T=(pu1(t),...,puf(t))inthesamewaythatwetreateduserbiases.Inparticularwehavefoundmodelingafter(8)effective,leadingto
puk(t)=puk+αuk·devu(t)+pukt
k=1,...,f.
(14)
Herepukcapturesthestationaryportionofthefactor,αuk·devu(t)approximatesapossibleportionthatchangeslinearlyovertime,andpuktabsorbstheverylocal,day-speci cvari-ability.
Wewereoccasionallyalsousingamorememoryef cientversion,withouttheday-speci cportion:
puk(t)=puk+αuk·devu(t)k=1,...,f
(15)
Thesamemodelwasalsoextendedwiththeaforementionedfrequencies.Sincefrequencyaffectstheperceptionofmovies,wetriedtoinjectfrequencyawarenessintothemoviefactors.Tothisendwecreatedanothercopyofthemoviefactors,foreachpossiblefrequencyvalue.Thisleadstothemodel
r 1
ui=bui+(qTi+qTi,fui)
pu(tui)+|N(u)|
yj (16)
j∈∑
.N(u)
Herethede nitionofbuiisfrequency-awarefollowing(11).Noticethatwhilethetransitiontofrequency-awarebiaseswasmeasurablyeffective,theintroductionoffrequency-dependentmoviefactorswasbarelybene cial.A.What’sintheblend?
Weincludedmultiplevariationsofthematrixfactorizationmodelsintheblend.Allmodelsarelearnedbystochasticgradientdescentapplieddirectlyontherawdata,nopre-orpost-processingareinvolved.Inotherwords,allparameters(biases,user-factorsandmovie-factors)aresimultaneously
5
learnedfromthedata.Constants(learningratesandregu-larizationtobespeci edshortly)aretunedtoreachlowestRMSEafter40iterations.(Practically,onecangiveortakearoundteniterationswithoutameaningfulRMSEimpact).However,forblendingwehavefoundthatover-trainingishelpful.Thatis,weoftenletthealgorithmrunfarmorethan40iterations,therebyover ttingthetraindata,whichhappenstobebene cialwhenblendingwithotherpredictors.
The rstmodelistheoneusingrule(13),togetherwiththemorememoryef cientuser-factors(15).Thesettingscontrol-lingthelearningofbias-relatedparametersareasdescribedinSec.III-D.Asforlearningthefactorsthemselves(qi,puandyj),weareusingalearningrateof0.008andregularizationof0.0015,wherethelearningratedecaysbyamultiplicativefactorof0.9aftereachiteration.Finally,forαukthelearningrateis1e-5andtheregularizationis50.Thesesamesettingsremainthesamethroughoutthissection.Thethreevariantswithinourblendare:
1)f=20,#iterations=40,RMSE=0.89142)f=200,#iterations=40,RMSE=0.88143)f=500,#iterations=50,RMSE=0.8815
Thenextmodelstillemploysrule(13),butwiththemoreaccurateuser-factorrepresentation(14).Thisaddsonetypeofparameter,pukt,whichislearnedwithalearningrateof0.004andregularizationof0.01.Thetwovariantswithintheblendwerebothheavilyover-trainedtoover tthetrainingdata:1)f=200,#iterations=80,RMSE=0.88252)f=500,#iterations=110,RMSE=0.8841
Finallywehaveourmostaccuratefactormodel,whichfollows(16).Whilemainnoveltyofthismodel(overthepreviousone)isinthebiasterm,wealsoaddedthefrequency-speci cmovie-factorsqi,fregularizationui.Theirrespectivelearningrateis2e-5,withof0.02.Theblendincludessixvariants:1)f=200,#iterations=40,RMSE=0.87772)f=200,#iterations=60,RMSE=0.87873)f=500,#iterations=40,RMSE=0.87694)f=500,#iterations=60,RMSE=0.87845)f=1000,#iterations=80,RMSE=0.87926)
f
=2000,#iterations=40,RMSE=0.8762
Later,werefertothemodelwithf=200and#iterations=40
as[PQ2].
V.NEIGHBORHOODMODELSWITHTEMPORALDYNAMICSThemostcommonapproachtoCFisbasedonneigh-borhoodmodels.Whiletypicallylessaccuratethantheirfactorizationcounterparts,neighborhoodmethodsenjoypop-ularitythankstosomeoftheirmerits,suchasexplainingthereasoningbehindcomputedrecommendations,andseamlesslyaccountingfornewenteredratings.ThemethoddescribedinthissectionisbasedonSec.5ofourKDD’09paper[8].Recently,wesuggestedanitem-itemmodelbasedonglobaloptimization[7],whichwillenableusheretocapturetimedynamicsinaprincipledmanner.Thestaticmodel,withouttemporaldynamics,iscenteredonthefollowingprediction
上一篇:火车票售票管理系统
下一篇:网店加盟、实体加盟合同规范。