推荐系统netflix获奖算法(3)
发布时间:2021-06-07
发布时间:2021-06-07
赢得netflix推荐系统大奖的算法
consideredforparameterizingtemporaluserbehavior,withvaryingcomplexityandaccuracy.
Onesimplemodelingchoiceusesalinearfunctiontocaptureapossiblegradualdriftofuserbias.Foreachuseru,wedenotethemeandateofratingbytu.Now,ifuratedamovieondayt,thentheassociatedtimedeviationofthisratingisde nedas
devu(t)=sign(t tu)·|t tu|β.
Here|t tu|measuresthenumberofdaysbetweendatestandtu.WesetthevalueofβbyvalidationontheProbeset;inourimplementationβ=0.4.Weintroduceasinglenewparameterforeachusercalledαusothatwegetour rstde nitionofatime-dependentuser-bias:
bu(1)
(t)=bu+αu·devu(t)
(7)
Thissimplelinearmodelforapproximatingadriftingbehaviorrequireslearningtwoparametersperuser:buandαu.
Thelinearfunctionformodelingtheuserbiasmesheswellwithgradualdriftsintheuserbehavior.However,wealsoobservesuddendriftsemergingas“spikes”associatedwithasingledayorsession.Forexample,wehavefoundthatmultipleratingsausergivesinasingleday,tendtoconcentratearoundasinglevalue.Suchaneffectneednotspanmorethanasingleday.Thismayre ectthemoodoftheuserthatday,theimpactofratingsgiveninasingledayoneachother,orchangesintheactualraterinmulti-personaccounts.Toaddresssuchshortlivedeffects,weassignasingleparameterperuserandday,absorbingtheday-speci cvariability.Thisparameterisdenotedbybut.
IntheNet ixdata,auserrateson40differentdaysonaverage.Thus,workingwithbutrequires,onaverage,40parameterstodescribeeachuserbias.Itisexpectedthatbutisinadequateasastandaloneforcapturingtheuserbias,sinceitmissesallsortsofsignalsthatspanmorethanasingleday.Thus,itservesasanadditivecomponentwithinthepreviouslydescribedschemes.Theuserbiasmodel(7)becomes
bu(3)
(t)=bu+αu·devu(t)+but.
(8)
Thediscussionsofarleadstothebaselinepredictorbui=µ+bu+αu·devu(tui)+bu,tui+bi+bi,Bin(tui).
(9)
Ifusedasastandalonepredictor,itsresultingRMSEwouldbe0.9605.
Anothereffectwithinthescopeofbaselinepredictorsisrelatedtothechangingscaleofuserratings.Whilebi(t)isauser-independentmeasureforthemeritofitemiattimet,userstendtorespondtosuchameasuredifferently.Forexample,differentusersemploydifferentratingscales,andasingleusercanchangehisratingscaleovertime.Accordingly,therawvalueofthemoviebiasisnotcompletelyuser-independent.Toaddressthis,weaddatime-dependentscalingfeaturetothebaselinepredictors,denotedbycu(t).Thus,thebaselinepredictor(9)becomes
bui=µ+bu+αu·devu(tui)+bu,tui+(bi+bi,Bin(tui))·cu(tui).
(10)
3
Alldiscussedwaystoimplementbu(t)wouldbevalidforimplementingcu(t)aswell.Wechosetodedicateaseparateparameterperday,resultingin:cu(t)=cu+cut.Asusual,cuisthestablepartofcu(t),whereascutrepresentsday-speci cvariability.
Addingthemultiplicativefactorcu(t)tothebaselinepre-dictor(asper(10))lowersRMSEto0.9555.Interestingly,thisbasicmodel,whichcapturesjustmaineffectsdisregardinguser-iteminteractions,canexplainalmostasmuchofthedatavariabilityasthecommercialNet ixCinematchrecommendersystem,whosepublishedRMSEonthesameQuizsetis0.9514[4].B.Frequencies
ItwasbroughttoourattentionbyourcolleaguesatthePragmaticTheoryteam(PT)thatthenumberofratingsausergaveonaspeci cdayexplainsasigni cantportionofthevariabilityofthedataduringthatday.Formally,denotebyFuitheoverallnumberofratingsthatuserugaveondaytui.ThevalueofFuiwillbehenceforthdubbeda“frequency”,followingPT’snotation.InpracticeweworkwitharoundedlogarithmofFui,denotedbyfui= logaFui .1
Interestingly,eventhoughfuiissolelydrivenbyuseru,itwillin uencetheitem-biases,ratherthantheuser-biases.Accordingly,foreachitemiweintroduceatermbif,capturingthebiasspeci cfortheitemiatlog-frequencyf.Baselinepredictor(10)isextendedtobe
bui=µ+bu+αu·devu(tui)+bu,tui+(bi+bi,Bin(tui))·cu(tui)+bi,fui.
(11)
Wenotethatitwouldbesensibletomultiplybi,fuibycu(tui),butwehavenotexperimentedwiththis.
Theeffectofaddingthefrequencytermtothemoviebiasisquitedramatic.RMSEdropsfrom0.9555to0.9278.Notably,itshowsabaselinepredictorwithapredictionaccuracysigni cantlybetterthanthatoftheoriginalNet ixCinematchalgorithm.
Here,itisimportanttoremindthatabaselinepredictor,nomatterhowaccurate,cannotyieldpersonalizedrecommenda-tionsonitsown,asitmissesallinteractionsbetweenusersanditems.Inasense,itiscapturingtheportionofthedatathatislessrelevantforestablishingrecommendationsandindoingsoenablesderivingaccuraterecommendationsbysubjectingothermodelstocleanerdata.Nonetheless,weincludedtwoofthemoreaccuratebaselinepredictorsinourblend.
Whyfrequencieswork?:Inordertograspthesourceoffrequenciescontribution,wemaketwoempiricalobservations.First,wecouldseethatfrequenciesareextremelypowerfulforastandalonebaselinepredictor,butaswewillsee,theycontributemuchlesswithinafullmethod,wheremostoftheirbene tdisappearswhenaddingtheuser-movieinteractionterms(matrixfactorizationorneighborhood).Secondisthefactthatfrequenciesseemtobemuchmorehelpfulwhenusedwithmoviebiases,butnotsowhenusedwithuser-relatedparameters.
1Notice
thatFuiisstrictlypositivewheneveritisused,sothelogarithmis
wellde ned.
上一篇:火车票售票管理系统
下一篇:网店加盟、实体加盟合同规范。