第二类曲线积分的计算(复习知识)(2)

时间:2025-04-20

练题 2

设力()y x F ,

在x 轴和y 轴方向上的投影分别为),(y x P

与),(y x Q ,那么

()y x F ,

=

()

),(),,(y x Q y x P j y x Q i y x P

),(),(+=由于

),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方向

上的投影分别为11---=∆-=∆i i i i i i y y y x x x 与.记i i M M L 1-

=),(i i y x ∆∆从而力()y x F ,

小曲线段i i M M 1-上所作的功i W ⋅≈),(i F ηξ

i i M M L 1- = ()i i P ηξ,i x ∆+()i i Q ηξ,i y ∆

其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F ,

沿L 所作的功可近似等于

i W =∑=n i i W 1

i n

i i i i n i i i y s Q x S P ∆+∆≈∑∑==1

1

),(),(ηη当0→T 时,右端积分和式的极限就是所

求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分.

2.2 第二型曲线积分的定义

设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ∆,分割T 的细度为}{max 1i n

i S T ∆=≤≤,又设T 的分点的坐标为

),(i i i y x M ,并记11,---=∆-=∆i i i i i i y y y x x x ,),,2,1(n i = .

在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

∑=→∆n

i i

i

i

T x

P 1

),(lim

ηξ∑=→∆+n

i i

i

i

T y

Q 1

),(lim

ηξ

存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段

AB L 上的第二类曲线积分,记为

⎰+L

dy y x Q dx y x P ),(),(或 ⎰+AB

dy y x Q dx y x P ),(),(

也可记作

⎰⎰

+L

L

dy y x Q dx y x P ),(),( 或

⎰⎰+AB

AB

dy y x Q dx y x P ),(),(

第二类曲线积分的计算(复习知识)(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219