微分中值定理证明中辅助函数的构造(3)
时间:2025-04-20
时间:2025-04-20
微分中值定理证明中辅助函数的构造
第2期 宋振云,等:微分中值定理证明中辅助函数的构造 13
[4] 孟宪吉,王瑾.拉格朗日中值定理的新证明[J].沈阳师范大学学报:自然科学版,2003(4):252-254.
[5] 谭杰锋.行列式函数构造与应用的一点注记[J].合肥学院学报,2007(2):17-19.
[6] 同济大学应用数学系.高等数学(上册)[M].5版.北京:高等教育出版社,2003:126-132.
The construction of additive functions to testify differential mean value theorem
SONG Zhen-yun,CHEN Shao-yuan,TU Qiong-xia
(School of Information Technology,Hubei Polytechnic Institute,Xiaogan 432000,China)
Abstract:According to the one-to-one correspondence between the complex numberx+yi and the point (x, y)(x, y∈R)on the plane,can take them as identical.Constructed a series of additive functions to meet Rolle theorem conditions with the multiply method of complex numbers while testifying Lagrange mean value theorem,also put forward a method of constructing additive functions to testify Cauchy mean value theorem.
Key words:differential mean value theorem;functions of complex variables;additive functions
(上接第9页)
参考文献:
[1] 彭晓珍,严钦容.关于交错级数的一个新的审敛准则[J].大学数学,2004,20(3):120-123.
[2] 杨万必.关于交错级数的审敛准则的改进和推广[J].大学数学,2006,22(2):138-141.
[3] 苏翃,邱利琼,王大坤,等.一类交错级数的收敛定理[J].大学数学,2006,22(5):143-146.
[4] 华东师范大学数学系.数学分析(下册)[M].3版.北京:高等教育出版社,2006:13-17.
[5] 周玉霞.关于正项级数敛散性判定的一类方法[J].大学数学,2006,22(1):109-110.
An new criterion for convergence or divergence of alternating series
QIAN Wei-yi
(Department of Mathematics,Bohai University,Jinzhou 121000,China)
Abstract:Alternating series is one of important contents in mathematical analysis,now,there are not many criterions about convergence or divergence of alternating series. Established a new criterion to decide convergence or divergence of alternating series. Based on the convergence criterion,can decide not only convergence or divergence but also absolute convergent or conditional convergent of alternating series.Selected some examples to test the feasibility of the proposed criterion.
Key words:alternating series;criterion;convergence;divergence
上一篇:蜂房芽孢杆菌木聚糖酶的活性