平方差公式练习题精选(含答案)(7)

发布时间:2021-06-07

=(y+z)2-(y-z)2

=(y+z+y-z)[y+z-(y-z)]

=2y·2z=4yz.

点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.

12.解法一:如图(1),剩余部分面积=m2-mn-mn+n2=m2-2mn+n2.

解法二:如图(2),剩余部分面积=(m-n)2.

∴(m-n)2=m2-2mn+n2,此即完全平方公式.

点拨:解法一:是用边长为m的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n的正方形.

解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n) 的正方形面积.做此类题要注意数形结合.

13.D 点拨:x2+4x+k2=(x+2)2=x2+4x+4,所以k2=4,k取±2.

1114.B 点拨:a2+2=(a+)2-2=32-2=7. aa

15.A 点拨:(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)] 2+(c-a)2=(2+1)2+(-1)2=9+1=10.

16.B 点拨:(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x- 2y)2 =25x2-20xy+4y2.

17.2 点拨:(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式.

18.(1)a2+b2=(a+b)2-2ab.

∵a+b=3,ab=2,

∴a2+b2=32-2×2=5.

(2)∵a+b=10,

∴(a+b)2=102,

a2+2ab+b2=100,∴2ab=100-(a2+b2).

又∵a2+b2=4,

∴2ab=100-4,

ab=48.

平方差公式练习题精选(含答案)(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219