07线性代数讲义[1](4)
发布时间:2021-06-06
发布时间:2021-06-06
大学线性代数讲义前面有对知识的讲解,后面是习题。便于理解。不想挂科的同学们的必备之物
§1.2
Ï ,123 '¤kü 123 (ó),132(Û),213(Û),231(ó),312(ó),321
a11a12a13
(Û),Ïd a21a22a23 =( 1)τ(i1i2i3)a1i1a2i2a3i3.
a31a32a33
a110···0 a 21a22···0
~.O :(1).D= =a11···ann.
············ a n1an2···ann
0···0a1n
0···an(n 1)0 2(n 1)
(2).D= =( 1)an1···a1n.
············ a00 n1···
:P56,1.2"1.^I ª'½ÂO e I ª' .
0b1000 00···0a1 00b002 a0···00 2 (1). =a1a2a3 an.(2). 000b30 =a1b1b2b3b4. 0a3···00 0000b 4 00···a 0n
a1a2a3a4a5
a 11a12a13a14a15 a21a22a23a24a25 (3). a31a32000 =0.
00 a41a420
a51a52000
2.!Ñ40I ª¥¤k KÒ ¹kÏfa11a23' .
3.y²:eQ n0I ª¥1u0'£ ' ê un2 n,uTI ª 0.
4.©yÀtiÚj,¦&(1)¥1274i56j9¤Ûü ,(2)¥1i25j4897¤óü .§1.3
1 ª 5
=( 1)τ(i1,i2,···,in)a1i1···anin(ØÓIØÓ a
11a12
£ 'È).kw ,n0I ª: =( 1)τ(i1i2)a1i1a2i2.
a21a22
n01 ª ½Â
a11a12···a1n a
21a22···a2n
D=
············ a
n1an2···ann
{zI ª'O , A S .XtòI ªD'I
p ,&¡ I ª'= & '5I ª,P D .
下一篇:2014继续教育初中数学教学设计