【中考真题】2017年绵阳市中考数学试卷(附答案)
时间:2026-01-18
时间:2026-01-18
2017年四川省绵阳市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()
A.0.5 B.±0.5 C.﹣0.5 D.5
2.下列图案中,属于轴对称图形的是()
A. B.C.D.
3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102
4.如图所示的几何体的主视图正确的是()
A.B.C.D.
5.使代数式+有意义的整数x有()
A.5个 B.4个 C.3个 D.2个
6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()
A.10m B.12m C.12.4m D.12.32m
7.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()
A.﹣8 B.8 C.16 D.﹣16
8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()
A.68πcm2B.74πcm2C.84πcm2D.100πcm2
9.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F 两点.若AC=2,∠AEO=120°,则FC的长度为()
A.1 B.2 C.D.
10.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()
A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣8
11.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E 作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()
A.B.C.D.
12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则
+++…+的值为()
A .
B .
C .
D .
二、填空题(本大题共6小题,每小题3分,共18分)
13.分解因式:8a 2﹣2=
. 14.关于x 的分式方程=
的解是
.
15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .
16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +的最小值为 .
18.如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是,则的值是 .
三、解答题(本大题共7小题,共86分)
19.(1)计算: +cos245°﹣(﹣2)﹣1﹣|﹣|
(2)先化简,再求值:(﹣)÷,其中x=2,y=.
20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):
182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224
(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:
谷粒颗数175≤x<
185185≤x<
195
195≤x<
205
205≤x<
215
215≤x<
225
频数810
3
对应扇形
图中区域
D E C
如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?
21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
22.如图,设反比例函数的解析式为y=(k>0).
(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;
(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.
23.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD 的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点 …… 此处隐藏:5800字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:LNG撬装站的推广和应用
下一篇:苏教版六年级语文上册教案全集