红外制导的发展趋势及其关键技术(2)
发布时间:2021-06-06
发布时间:2021-06-06
除张角较小的点源红外干扰和复杂背景干扰,从目标获取的信息量太少而制导精度不高,也没有区分多目标的能力,主要用于近距空空格斗弹、反坦克导弹,及其他低成本、小型化导弹。
红外成像制导系统一般由红外摄像头、图像处理电路、图像识别电路、跟踪处理器和稳定系统等组成。红外摄像头接收前方视场范围内目标和背景红外辐射,利用各部分辐射强度的差别,获得能够反映目标和周围景物分布特征的二维图像信息,然后由图像处理电路进行预处理和图像增强,得到可见光图像以视频显示输出,同时将数字化后的图像送给图像识别电路,通过特征识别算法从背景信息和干扰中提取出目标图像,由跟踪处理器按照预定的匹配跟踪算法计算出光轴相对于目标的角偏差,最后通过稳定系统驱动红外镜头运动,消除相对误差实现目标跟踪。这类系统在抗干扰能力、探测灵敏度、空间分辨率等方面有很大提高,能够探测远程小目标和鉴别多目标,甚至可以实现对目标的自动识别和命中点的选择,但其结构复杂、成本高,主要用于巡航导弹、反舰导弹、空地导弹等。
1.2红外制导技术的发展历程
1.2.1红外点源制导技术
自从1948年第1枚红外制导导弹——美国的响尾蛇导弹(Sidewinder)问世以来,红外制导技术获得了大量应用和快速发展,主要分为以下几个阶段:
第l阶段:20世纪60年代中期以前,这时的红外制导武器主要用于攻击空中速度较慢的飞机,其探测器采用不制冷的硫化铅,信息处理系统为单元调制盘式调幅系统,工作波段为1—3 pan,灵敏度低、抗干扰能力差、跟踪角速度低。这一阶段的典型产品有美国的响尾蛇AIM一9B、红眼睛Redeye,以及前苏联的K-13、SAM-7等。
第2阶段:20世纪60年代中期到70年代中期,探测器采用了制冷的硫化铅或锑化铟从而极大地提高了灵敏度,工作波段也延伸到3—5 tan的中红外波段,改进了调制盘和信号处理电路,提高了跟踪速度。这一阶段制导武器的作战性能得到了较大的提高,虽然还只能进行尾追攻击,但攻击区和对付高速目标的能力有很大提高,代表型号有美国的AIM.9D、法国的马特拉R530等。
第3阶段:20世纪70年代后期以后,红外探测器均采用了高灵敏度的制冷锑化铟,并且改变了以往的光信号的调制方式,多采用了圆锥扫描和玫瑰线扫描,亦有非调制盘式的多元脉冲调制系统,具有探测距离远,探测范围大、跟踪角速度高等特点,有的还具有自动搜索和自动截获目标的能力。因此,这一阶段的红外制导武器可进行全向攻击和对付机动目标,代表型号有美国的AIM 9L、前苏联的R-73E、以色列的怪蛇3、美国的毒刺(Stinger)及法国的西北风(Mistral)等。
2.2.2红外成像制导技术
受高技术作战需求的强力推动,近20年来红外成像制导技术发展十分迅猛,其发展历程大致如下:第1代红外成像制导系统出现于20世纪70年代,采用线列阵红外探测器加旋转光机扫描机构,由4×4元光导碲镉汞探测器的串并扫描成像,工作波长为8,14脚。代表型号有发射前锁定目标的AGM-65D幼畜反坦克导弹、AGM一65F反舰导弹以及发射后锁定目标的AGM一84E斯拉姆导弹。第2代红外成像制导系统出现于20世纪80年代,采用小规模红外焦平面阵列探测器,以串并扫描方式工作。这类制导系统可以连续积累目标辐射能量,具有分辨率高、灵敏度高、信息更新率高的优点,能够对付高速机动小目标、复杂地物背景中的运动目标或隐蔽目标。红外焦平面阵列探测器灵敏度比线列器件高1个数量级,成本又比凝视型焦平面器件低,同时结构紧凑、体积小、可靠性高,易于小型化,从而促进了红外成像制导小型战术导弹的发展。代表型号有德、英、法三国联合研制的远程反坦克导弹崔格特(T69at),美国的高空防御拦截弹(皿DI)。第3代红外成像制导系统采用了更大规模的焦平面阵列探测器和凝视工作方式,采用电子自扫描取代复杂的光机扫描机构,简化了信号处理和读出电路,可以充分发挥探测器的快速处理能力,其作用距离更远,热灵敏度、空间分辨率更高。20世纪80年代后期以来,凝视红外焦平面阵列器件发展很快,其中3.5/an中波段器件已发展到512×512元,锑化铟光伏器件已达256×256元,长波8一12胛光伏碲镉汞/硅CCD混合焦平面探测器已达128×128元。目前焦平面探测器正在向着高密集度、多光谱、多响应度、高探测率、高工作温度、低成本的方向发展。因此,国际上新投入研制的红外成像制导系统几乎全部采用了凝视型焦平面阵列技术,典型代表有美国的海尔法(Hell.fire)、AIM.9X空空导弹、AAWS-M反坦克导弹等。
2红外制导系统的发展趋势
精确制导技术的发展趋势是灵敏度、精度、环境
适应性不断提高,系统在复杂背景下截获、跟踪目标