晶体硅太阳电池设计-扩散基础(3)
发布时间:2021-06-06
发布时间:2021-06-06
晶体硅太阳电池设计-扩散基础
的一种扩散。这种扩散机构的特征是杂质原子占据晶体内晶格格点的正常位置,不改变原材料的晶体结构。在靠近硅晶片表面的薄层内扩散进去的磷原子最多,距表面愈远,磷原子愈少。也就是说,杂质浓度(磷浓度)随着距硅表面距离的增加而减少。从以上分析中我们可以看到,浓度差别的存在是产生扩散运动的必要条件,环境温度的高低则是决定扩散运动快慢的重要因素。环境温度愈高,分子的运动越激烈,扩散过程进行得就越快。当然,扩散时间也是扩散运动的重要因素,时间愈长,扩散浓度和深度也会增加。
硅晶片是P型的,如果扩散进去的磷原子浓度高于P型硅晶片原来受主杂质浓度,这就使得P型硅晶片靠近表面的薄层转变成为N型了。由于愈靠近硅晶片表面,硼原子的浓度愈高,因此可以想象:在距离表面为xj的地方,那里扩散进去的磷原子浓度正好和硅晶体中原来的硼原子浓度相等。在与表面距离小于xj的薄层内,磷原子浓度高于原来硅晶片的硼原子浓度,因此这一层变成了N型硅半导体。在与表面距离大于xj的地方,由于原来硅晶片中的硼原子浓度大于扩散进去的磷原子浓度,因此仍为P型。由此可见,在与表面距离xj处,形成了N型半导体和P型半导体的交界面,也就是形成了PN结。xj即为PN结的结深。
这样我们就可以利用杂质原子向半导体晶片内部扩散的方法,改变半导体晶片表面层的导电类型,从而形成P、N结,这就是用扩散法制造P-N结的基本原理。
4、 结深
对扩散的要求是获得适合于太阳电池pn结需要的结深和扩散层方块电阻,浅结死层小,电池短波响应好,而浅结引起串联电阻增加,只有提高栅电极的密度,才能有效提高电池的填充因子,这样,增加了工艺难度,结深太深,死层比较明显,如果扩散浓度太大,则引起重掺杂效应,使电池开路电压和短路电流均下降,实际电池制作中,考虑到各个因素,太阳电池的结深一般控制在0.3~0.5 m。
5、 恒定源扩散与恒量源扩散
固体中的扩散方程可写成下式: N(x,t) 2N(x,t) D (5-1) 2 t x
式中的N(x,t)表示杂质浓度,是坐标x和时间t的函数。坐标x指杂质原子进入硅中的深度,即距离表面的距离,单位取厘米,时间t单位取秒,上式已假定D是一个常数。事实上,扩散系数D是表征扩散速度的物理常数,随着固体的温度上升而变大,同时还受到杂质浓度、晶体结构等因素的影响。
在扩散过程中,硅片周围的杂质浓度恒定,不随时间而改变,硅片表面的杂质浓度Ns保持不变,始终等于源相中的杂质浓度,称这种情况为恒定源扩散,根据边界条件,(5-1)式的解为:
N(x,t) Nserfc(x/2Dt) (5-2)
只要知道杂质在硅中的扩散系数D和表面浓度Ns,利用(5-2)式可作出该杂质在硅中的分布曲线,如图5-5所示,称这种分布为余误差分布。
下一篇:社区治理作业册参考答案