中国矿业大学运筹学-总复习
时间:2025-02-23
时间:2025-02-23
运 筹 学
运 筹 学复China University of Mining and Technology
习
运 筹 学例1 求解如下线性规划问题
复
习
max z 2 x1 3x2 x3 x1 3x2 x3 15 2 x 3 x x 18 1 2 3 s.t. x1 x2 x3 3 x1 , x2 , x3 0
-2China University of Mining and Technology
运 筹 学解:加入松弛变量,标准化得
复
习
max z 2 x1 3x2 x3 15 x1 3x2 x3 x4 2 x 3x x x5 18 1 2 3 s.t. x6 3 x1 x2 x3 x1 , x2 , x3 , x4 , x5 , x6 0
建立单纯形表如下:
0 0 x4 0 x5 0 x6 15 18 3
2 x1 1 2 1
3 x2 3 3 1
1 x3 1 1 1
0 x4 1 0 0
0 x5 0 1 0
0 x6 0 0 1-3-
China University of Mining and Technology
运 筹 学0 x4 x5 x6 15 18 3 0 2 x1 1 2 1 2 3 x2 3 3 1 3 1 x3 1 1 1 1 0 x4 1 0 0 0 0 x5 0 1 0 0 0 x6 0 0 1 0
复
习
5 6
x2 x5
5 3
1 3 1
1 0
1 3 2 4 3 0
1 3 1 1 3 1
0 1 0 0
0 0 1 0
15 3 6-4-
4 x6 8 0 3 15 1 0 China University of Mining and Technology
运 筹 学x2 x1 x6 x2 x1 x3
复
习
15 4 3 4 18 3 5 1 20
1 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 2 4 2 0 0 0
1 2/3 1 5/3 0 1/ 4 1/ 6 5 /12 5/6
0 1/ 3 1
0 0
4
0 4 / 3 1 1 1 0 1/ 3 1/ 3 1/ 3 0 1/ 4 1/ 2 1/ 4 1/ 2
0 1
x1 5, x2 3, x3 1 解毕 max z 20China University of Mining and Technology
-5-
运 筹 学例2 用对偶单纯形法计算
复
习
min w 2 x1 3x2 4 x3 x1 2 x2 x3 3 2 x1 x2 3x3 4 x , x , x 0 1 2 3
-6China University of Mining and Technology
运 筹 学解:为了便于 寻找初始正则 解,将问题变 形为:
复
习
max w ' 2 x1 3 x2 4 x3 x1 2 x2 x3 x4 3 2 x1 x2 3 x3 x5 4 取{x4,x5}为初始正则 解,列单纯形表如下: x , x , x , x , x 0 1 2 3 4 5
-7China University of Mining and Technology
运 筹 学-2XB x4 b -3 x1 -1
复
习
-3x2 -2
-4x3 -1
0x4 1
0x5 0
x5
-40
[-2]-2
1-3
-3-4
0
1
由于初始正则解有负分量,于是取min{-3,-4}=-4 x5为换出变量,取
min{
j 5 j
5 j 0} min{ , , } 1 2 2 4 3
1 51
x1为换入变量,得新基{x4,x1} , 51= -2为主元-8China University of Mining and Technology
运 筹 学基变换的过程:
复
习
1. 主元变为1,即用-2去除单纯形表中基变量x5所在的行;2. 主元所在列的其它元变为0,消去非基变量x1所在的列的 其余元-1,-2; 3. 得新基{x4,x1}的单纯形表 -2 XB x4 x5 b -3 -4 0 x1 -1 [-2] -2 -3 x2 -2 1 -3 -4 x3 -1 -3 -4-9China University of Mining and Technology
0 x4 1 0
0 x5 0 1
运 筹 学基变换的过程: -2 XB x4 x5 b -3 -4 0 x1 -1 [-2] -2 -2 XB x4 x1 b -1 2 4 x1 0 1 0 -3 x2 -2 1 -3 -3 x2 -5/2 -1/2 -4 -4 x3 -1 -3 -4 -4 x3 1/2 3/
2 -1 x4 1 0 0 x5 -1/2 -1/2 -1 0 x4 1 0 0 x5 0 1
复
习
-10China University of Mining and Technology
运 筹 学-2XB x4 x1 b -1 2 4 x1 0 1 0
复
习
-3x2 -5/2 -1/2 -4
-4x3 1/2 3/2 -1 x4 1 0 0 x5 -1/2 -1/2 -1
可见正则解的有负分量,由于x4=1 , 所以取x4为换出变量,取
j 4 1 8 2 min{ 4 j 0} min{ 5 , , } 1 4 j 2 2 5 42x2为换入变量,得新基{x2,x1} , 42=-5/2为主元-11China University of Mining and Technology
运 筹 学进行基变换,得新正则解的单纯形表: -2XB x2 x1 b 2/5 11/5 28/5 x1 0 1 0
复
习
-3x2 1 0 0
-4x3 -1/5 7/5 -3/5 x4 -2/5 -1/5 -8/5 x5 1/5 -2/5 -1/5
此时正则解是可行解,也是最优解。 X*=(11/5,2/5,0,0,0);z*=-28/5-12China University of Mining and Technology
运 筹 学例3
复
习
试用对偶原理求解线性规划问题
min z 2 x1 3 x2 5 x3 2 x4 3 x5 x1 x2 2 x3 x4 3 x5 4 2 x1 x2 3 x3 x4 x5 3 x 0, j 1, 2, 3, 4, 5 j已知其对偶规划的最优解为
y ,y * 1 4 5 * 2
3 5
-13China University of Mining and Technology
运 筹 学解:
复
习
min z 2 x1 3 x2 5 x3 2 x4 3 x5 x1 x2 2 x3 x4 3 x5 4 2 x1 x2 3 x3 x4 x5 3 x 0, j 1, 2, 3, 4, 5 j
该问题的对偶规划为
max w 4 y1 3 y2 y1 2 y2 2 y1 y2 3 2 y1 3 y2 5 y1 y2 2 3 y y 3 2 1 y1 0, y2 0 China University of Mining and Technology
-14-
运 筹 学min z 2 x1 3 x2 5 x3 2 x4 3 x5 x1 x2 2 x3 x4 3 x5 4 2 x1 x2 3 x3 x4 x5 3 x 0, j 1, 2, 3, 4, 5 j利用松紧关系,将最优解* 1
复
习
max w 4 y1 3 y2 y1 2 y2 2 y1 y2 3 2 y1 3 y2 5 y1 y2 2 3 y y 3 2 1 y1 0, y2 0
y ,y 4 5 * 2
3 5
y1 y2 3 2 y1 3 y2 5 松约束 y1 y2 2 y 0, 1 y2 0
代入对偶规划的约束条件得下列约 其对偶约束是紧约束 束是松约束,
x2 0 x3 0 紧约束 x4 0 x x 2x x 3x 4 3 4 5 1 2 2 x1 x2 3 x3 x4 x5 3
-15-
China University of Mining and Technology
运 筹 学设原问题的最优解为* * * * * X * ( x1 , x2 , x3 , x4 , x5 )T ,
复
习
有
* * * x2 x3 x4 0; * * x1 3 x5 4 * * 2 x1 x5 3
x2 0 x3 0 紧约束 x4 0 x x 2x x 3x 4 3 4 5 1 2 2 x1 x2 3 x3 x4 x5 3
求得
* * x1 1, x5 1
X * (1, 0, 0, 0,1)T , z* 5-16China University of Mining
and Technology
运 筹 学
复
习