2015年新疆维吾尔自治区C#语言入门
时间:2025-04-04
时间:2025-04-04
2015年新疆维吾尔自治区C#语言入门
1、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。
设当n=m-1时结论成立,现证明当n=m时结论成立。
设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。
若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。
若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。
最后,当1<i<m时,Si把中序序列分成{S1,S2,…,Si-1}和{Si+1,Si+2,…,Sm}。由于后序遍历是“左子树—右子树—根结点”,所以{P1,P2,…,Pi-1}和{Pi,Pi+1,…Pm-1}是二叉树的左子树和右子树的后序遍历序列。因而由{S1,S2,…,Si-1}和{P1,P2,…,Pi-1}
可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和
{Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。
2、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。
#define true 1
#define false 0
typedef struct node
{datatype data; struct node *llink,*rlink;} *BTree;
void JudgeBST(BTree t,int flag)
// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。
{ if(t!=null && flag)
{ Judgebst(t->llink,flag);// 中序遍历左子树
if(pre==null)pre=t;// 中序遍历的第一个结点不必判断
else if(pre->data<t->data)pre=t;//前驱指针指向当前结点
else{flag=flase;} //不是完全二叉树
Judgebst (t->rlink,flag);// 中序遍历右子树
}//JudgeBST算法结束
3、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程
交替的冒泡排序算法。
48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)
4、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int
2015年新疆维吾尔自治区C#语言入门
Similar(BiTree p,q) //判断二叉树p和q是否相似
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))
}//结束Similar
5、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
6、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。
7、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)
…… 此处隐藏:7372字,全部文档内容请下载后查看。喜欢就下载吧 ……