开关电源磁性元件2
时间:2025-02-24
时间:2025-02-24
“时钟频率”是控制IC芯片产生的时钟脉冲频率。通常,开关频率与时钟频率相同,但不总是这样。偶尔,控制IC芯片经分频获得低的开关频率。特别将推挽IC控制芯片用于单端正激变换器,仅用两个开关驱动中的一个,保证最大占空度不超过50%。在这种情况下,开关频率是时钟频率的一半
通常发生混淆是推挽类拓扑。推挽类(推挽,半桥和全桥)功率电路每个功率开关以1/2时钟频率驱动,电路的开关频率就是时钟频率。变压器和单个功率开关和单个整流器都以“变压器频率fT”工作,它是开关频率的一半。电路输出滤波工作在开关频率。
7.1.7 占空度
占空度D定义为功率开关导通时间Ton与开关周期T的比:D=Ton/T。
在单端正激变换器中,这很容易明白。但在双端双路交错正激和推挽类变换器中,时常发生混乱。例如,双端双路交错正激变换器中,对于每一路,在输入电压最低Uimin时最大占空度约为0.45,每路变压器在45%时间内传输功率,传输总功率的一半。而对输出滤波电感占空度则为0.9。在半桥电路工作于最低电压时,占空度接近90%(D=0.9)。变压器在90%的时间传输功率,90%时间电压脉冲加在输入滤波器上等等。但对于单个功率开关和单个整流器,总是交替导通,占空度仅45%。输出滤波器可以看成D=0.5Ton/0.5T=Ton/T。在整个电源设计中,应保持D的定义一致。
正激或推挽类变换器稳态时,当输入电压变化时,反馈控制电路根据输入电压的变化反比改变占空度D,以维持输出电压的稳定Uo=U2’D。U2’≈Ui/n-滤波器输入电压,等于变压器次级电压减去整流二极管压降。因此
UiTon=
UiDnUo
(7-1) =
fsfs
式中 fS=1/T-开关频率。当输出电压恒定时,稳态情况下变压器线圈上的伏秒为常数,与电网电压
和负载电流无关。当输入电压最低(Uimin)时,占空度最大,还要考虑到以下对最大占空度的限制:
①根据输出电压调节范围,在输入电压最低时应保证输出最高电压。即最大占空度。在最高输入电压、轻载时最小占空度。
②正激变换器的变压器,在每个开关周期中导通磁化后必须使磁芯复位。如果复位反向电压被Ui箝位,同时复位线圈与初级线圈匝数相等,必须限制最大占空度小于50%,因为复位所需时间等于导通时间,同时还应当加上功率开关的关断延迟时间。在推挽类变换器中(桥式,半桥,推挽)占空度接近100%。在互补开关转换时关断延迟使得开通与关断晶体管共导通,必须设置死区。占空度应小于1。
③实际电路中,存在整流二极管压降,初级和次级线圈电阻,滤波电感电阻以及功率开关压降,也影响极限占空度Dlim 选择。
④如果在低输入电压Ui正好达到最大占空度极限值Dlim,当出现突加负载时,调节器没有备份的伏秒能力,不能响应负载的突变,造成电压较大的跌落。因此希望Dmax< Dlim。
⑤在电源启动或突加负载时,瞬时造成输出电压跌落。反馈电路将占空度推向Dlim。由于输出滤波电感限制了输出电流的上升率,以致于在好几个开关周期工作在极限Dlim。如果输入又是最高电压Uimax,变压器伏秒比正常大几倍,即磁通变化量比额定变化量大几倍,可能使磁芯饱和。增加磁芯损耗不是个问题-因为瞬时工作。如果限制最大伏秒与稳态时伏秒相近,且因工作磁通密度受损耗限制远小于饱和磁通密度BS(对于正激是Bs-Br),这不成问题。例如限制的伏秒比额定的伏秒为3:1,如ΔB=0.08T,3倍ΔB =0.24T<BS。
如果存在这个问题,在电路中可采用软启动,软启动并不影响快速增长的负载。绝大部分控制芯片没有伏秒限制功能,具有软饱和特性功率磁芯材料可容忍磁芯饱和,不至于产生过大的磁化电流。但对陡峭饱和的矩形回线材料,这似乎是个灾难。解决办法是选择磁感应摆幅小到在不正常情况下不会饱和。
93
7.1.8 匝数和匝比选取
初级一般电压较高,调整初级匝数和匝比不困难。次级一般匝数较少,工作频率越高,次级有可能只有一匝,甚至少于一匝,如果取整,带来很大匝比误差,同时引起相关问题。
1.匝数的取整
在输出电压比较低时,例如5V,甚至1V左右,限制了匝数和匝比的选择。5V输出次级可能是1匝或2匝,每个线圈阶差1或2匝。计算结果1.5匝,取整可能选择2匝,为保持原来的匝比,所有线圈匝数增加25%。相同尺寸的磁芯和窗口,要在原来的窗口中绕不下总线圈。如加大了电流密度,大大增加了线圈损耗。反之,选择1匝,但磁芯中的磁通密度增加1/3,磁芯损耗可能增加一倍。
虽然没有通用的快速的选择每个线圈最优匝数的方法,但有一般规律可循。首先,决定额定UiD时达到希望输出电压的线圈之间的理想匝比。接着,在选择某磁芯尺寸后,求得匝比和匝数,但不是实际需要的整数。在取整数匝前最好折衷处理,试试几个可能。从最低电压次级开始,因为小的数字整数化百分比最大。特别是如果低输出电压的次级输出最大负载功率,而主控制回路调节的也是低压输出,最低电压次级匝数上升或下降对整个线圈影响最大。匝数下降将增加磁芯损耗,上升将增加线圈损耗。如果增加的损耗太大,必须重新选择磁芯,以便仅需要很少变动就可调整到整数匝。