Modeling and control of magnetorheological fluid dampers usi

发布时间:2024-11-17

HomeSearchCollectionsJournalsAboutContact usMy IOPscience

Modeling and control of magnetorheological fluid dampers using neural networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.2005 Smart Mater. Struct. 14 111

(http:///0964-1726/14/1/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 59.72.87.85

The article was downloaded on 09/10/2012 at 11:52

Please note that terms and conditions apply.

INSTITUTEOFPHYSICSPUBLISHINGSmartMater.Struct.14(2005)111–126

SMARTMATERIALSANDSTRUCTURES

doi:10.1088/0964-1726/14/1/011

Modelingandcontrolof

magnetorheological uiddampersusingneuralnetworks

DHWangandWHLiao1

SmartMaterialsandStructuresLaboratory,DepartmentofAutomationandComputer-AidedEngineering,TheChineseUniversityofHongKong,Shatin,NT,HongKongE-mail:whliao@cuhk.edu.hk

Received27February2003,in nalform3July2004Published7December2004

http:///SMS/14/111

Abstract

Duetotheinherentnonlinearnatureofmagnetorheological(MR) uiddampers,oneofthechallengingaspectsforutilizingthesedevicesto

achievehighsystemperformanceisthedevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheiruniquecharacteristics.Inthispaper,thedirectidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage,andtheinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageaccordingtothedesireddampingforcethroughsupervisedlearning.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMR uiddampersarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceoftheMR uiddamper.Moreover,validationmethodsfortheneuralnetworkmodelsdevelopedareproposedandusedtoevaluatetheirperformance.Validationresultswithdifferentdatasetsindicatethattheproposeddirectidenti cationdynamicmodelusingtherecurrentneuralnetworkcanbeusedtopredictthedampingforceaccuratelyandtheinverseidenti cationdynamicmodelusingtherecurrentneuralnetworkcanactasadampercontrollertogeneratethecommandvoltagewhentheMR uiddamperisusedinasemi-activemode.

(Some guresinthisarticleareincolouronlyintheelectronicversion)

1.Introduction

1.1.MR uiddampers

Magnetorheological(MR) uidsaresuspensionsthatexhibitrapid,reversible,andtunabletransitionfromafree- owingstatetoasemi-solidstateupontheapplicationofanexternalmagnetic eld.Thesematerialsdemonstratedramaticchangesintheirrheologicalbehaviorinresponsetoamagnetic eld(CarlsonandWeiss1994).MR uidshaveattracted

1Authortowhomanycorrespondenceshouldbeaddressed.

considerableinterestrecentlybecausetheycanprovideasimpleandrapidresponseinterfacebetweenelectroniccontrolsandmechanicalsystems(Kordonsky1993a,1993b).TheMR uiddampers,whichutilizetheadvantagesofMR uids,aresemi-activecontroldevicesthatarecapableofgeneratingamagnitudeofforcesuf cientforlarge-scaleapplications,whilerequiringonlyabatteryforpower(Dykeetal1996,Spenceretal1997).Additionally,thesedevicesofferhighlyreliableoperationsandtheirperformancesarerelativelyinsensitivetotemperature uctuationsorimpuritiesinthe uid.Inrecentyears,researchintoanddevelopmentof

111

0964-1726/05/010111+16$30.00©2005IOPPublishingLtdPrintedintheUK

DHWangandWHLiao

MR uiddampersandtheirapplicationshavebeenattractivetomanyresearchers.Already,a20tonMR uiddamperprototypehasbeendevelopedandtestedinthelaboratory(Spenceretal1998)andapplicationsofMR uiddamperscanbefoundovertherangefromcivilstructuressuchasbuildingsandbridges(Dykeetal1996,Housneretal1997,Spenceretal1998)toautomobiles(Choietal2000)andrailwayvehicles(LiaoandWang2003).

DuetotheinherentnonlinearnatureofMR uiddampers,oneofthechallengingaspectsforachievingahighlevelofperformanceisdevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheuniquecharacteristicsofMRdevices.

1.2.ThemodelingchallengeforMR uiddampers

Recently,bothnon-parametricandparametricmodelshavebeenproposedfordescribingthebehaviorofMR uiddampers.Parametricmodelsbasedonmechanicalidealizationshavebeenconsideredbyseveralresearchers(Spenceretal1997,Wereleyetal1998,Lietal2000).Spenceretal(1997)proposedthemodi edBouc–WenmodelfordescribingbehaviorofanMR uiddamper,inwhich14parametersneedtobedeterminedthroughcurve ttingofexperimentaldata,whichisverytime-consuming(LaiandLiao2002).Pangetal(1998)discussedfourmodelsfordescribingthebehaviorofMR uiddampers,namely:(1)theBinghamplasticmodel,(2)thebiviscousmodel,(3)thehystereticbiviscousmodel,and(4)theviscoelastic–plasticmodel;andLietal(2000)testedtheabovemodelsforthefrequencyrangeupto12Hz.TheseparametrizedmodelscanmodelthedynamicsofMR uiddamperswithinalimitedrange.

However,parametricidenti cationmethodsrequireassumptionsasregardsthestructureofthemechanicalmodelthatsimulatesbehavior.Onceamodelisselected,thevaluesofsystemparametersaredeterminedinsuchawaythattheerrorbetweentheexperimentalandthesimulatedresponsesisminimized.Theapproachcouldbedivergentifthestartingassumptionsforthestructureofthemodelare awed,orifproperconstraintsarenotappliedtotheparameters.Unrealisticparameterssuchasnegativemassorstiffnessmaybeobtained.Non-parametricmethodscouldavoidsomepitfallsoftheparametricapproachesformodeling,whicharerobustandapplicabletolinear,nonlinear,andhystereticsystems(EhrgottandMasri1992).FormodelingMR uiddampers,ChangandRoschke(1998)proposedanon-parametricmodelusingneuralnetworks,inwhichafeedforwardneuralnetwork(FNN)isused.TrainingandpredictionofthenetworkrelyoninputandoutputinformationonMR uiddampers.SchurterandRoschke(2000)investigatedthemodelingofMR uiddamperswithanadaptiveneuro-fuzzyinferencesystem.Gangetal(2001)exploredthemodelingofMR uiddamperswithanonlinearblackboxapproach.

1.3.InversedynamicmodelingandcontrolofMR uiddampers

ControlofthedampingforceofanMR uiddamperisalsoverychallengingbecauseofthefollowingtwofeatures:(1)strongnonlinearityand(2)thesemi-activerelationship112

betweenthedampingforceandthecommandvoltage.SotheforcegeneratedbytheMR uiddampercannotbecommandeddirectly;onlythevoltageappliedtothecurrentdriverfortheMR uiddampercanbedirectlycontrolled.Inordertoovercomethesedif culties,thedesireddampingforceoftheMR uiddamperisoftendeterminedat rstonlyaccordingtothestructureresponsesthroughthesystemcontroller;thenthecommandvoltageisdeterminedbythedampercontrolleronthebasisofthedesireddampingforceandthemonitoreddampingforceoftheMR uiddamper.Dykeetal(1996)proposedamethodinwhichtheHeavisidestepfunctionisusedtocalculatethecommandvoltage.TheactualdampingforceoftheMR uiddamperneedstobemonitoredonlineandthecommandvoltagevariesbetweentwovoltagestates.

Basedontheabovediscussions,neuralnetworks,whichcanbeusedtomatchnonlinearitythroughlearning,couldbeanappropriatealternativeforthemodelingandcontrolofMR uiddampers.Inthispaper,directidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworkswillbestudied.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMRdamperswillbepresented.Theneuralnetworkmodelsdevelopedwillbevalidatedthroughnumericalexperiments.ItshouldbenotedthatadampercontrollerfortheMRdamperusingtheinverseidenti cationdynamicmodelwiththerecurrentneuralnetwork(RNN),whichcanbeusedtogeneratethecommandvoltagewhentheMRdamperisworkinginasemi-activemode,isproposedandexploredforthe http://anizationofthispaper

Thispaperisorganizedasfollows.Themodi edBouc–WenmodelforMR uiddampersisdescribedinsection2becausethetrainingdataoftheneuralnetworkmodelsinthefollowingsectionsisgeneratedbythemodi edBouc–Wenmodel.Section3dealswithdirectidenti cationofMR uiddampersusingneuralnetworks.BoththeFNNandRNNmodelsareproposedformodelingMR uiddampers,andcharacteristicsofthesetwomodelsarediscussedandcompared.Insection4,neuralnetworksformodelingtheinversedynamicsofMR uiddampersareexplored.TheperformancesoftheneuralnetworkmodelsfortheMR uiddampersarevalidated.Section5mainlydealswiththeforcepredictionandtheforcecommandfortheMR uiddamperusingthedirectidenti cationneuralnetworkmodelsandtheinverseneuralnetworkmodelstrainedinsections3and4forMR uiddampers.Insection6,conclusionsanddiscussionsonfutureworkarepresented.

2.Themodi edBouc–WenmodeloftheMR uiddamper

ThemechanicalidealizationofanMR uiddamperdepictedin gure1hasbeenshowntoaccuratelypredictbehavioroftheMR uiddamperoverabroadrangeofinputs.ThephenomenologicalmodelproposedbySpenceretal(1997)isgovernedbythefollowingequations:

F=c1y

˙+k1(x x0)(1)

Figure1.ThedynamicmodelfortheMR uiddamper.

z˙= γ|x˙ y˙||z|n 1z β(x˙ y˙)|z|n+A(x˙ y˙)

(2)y˙=

1

c[αz+c0x˙+k00+c1

(x y)](3)α=α(u)=αa+αbu(4)c1=c1(u)=c1a+c1bu(5)c0=c0(u)=c0a+c0bu

(6)u˙= η(u v)

(7)

wherexandFarethedisplacementandtheforcegenerated

bytheMR uiddamperrespectively;yistheinternaldisplacementoftheMR uiddamper;uistheoutputofa rst-order lterandvisthecommandvoltagesenttothecurrentdriver.Inthismodel,theaccumulatorstiffnessisrepresentedbyk1;theviscousdampingsobservedatlargeandlowvelocitiesarerepresentedbyc0andc1,respectively.k0ispresenttocontrolthestiffnessatlargevelocities;x0isusedtoaccountfortheeffectoftheaccumulator.αisascalingvaluefortheBouc–Wenmodel.Thescaleandshapeofthehysteresisloopcanbeadjustedbyγ,β,A,andn.Atotalof14modelparameters,whichareshownintable1(LaiandLiao2002),areobtainedtocharacterizetheRD-1005-1MR uiddamper(manufacturedbyLordCorporation)usingexperimentaldataandaconstrainednonlinearoptimizationalgorithm.

Inordertotraintheproposedneuralnetworks,appropriatetrainingdatasetsarerequired.Thetrainingdatasetsshouldcovermostsituationsofpracticalapplicationsinordertoletthetrainedneuralnetworkmodelspredictwellwhileatthesametimetheselecteddatasetsshouldbesimpletospeedupthetrainingprocess.TheselecteddatasetstobeusedtotraintheneuralnetworkmodelsforMR uiddampersareillustratedintable2,inwhichthevalidationandtestdatasetsforthenetworktrainingarealsoshown.Intable2,thedisplacementinputisaGaussianwhitenoisesignal,thecommandvoltageinputconsistsofdifferentsignalswithindifferenttimeintervals,andtheforceisproducedbythemodi edBouc–Wenmodelaccordingtothedisplacementandcommandvoltageinputs.Thetimeintervalsofsignalsusedfortraining,validation,andtestingofneuralnetworksarelistedinthistable.

Timehistoriesofthetrainingdatasets(table2),whichareproducedusingthemodi edBouc–Wenmodeldescribedbyequations(1)–(7)andtheparametersgivenintable1,areshownin gure2.Theinputandoutputdatasetsareproducedatatimeincrementof0.002sandcanbeaccessibleasvectorsx,v,Fandtheircombinations.

ModelingandcontrolofMR uiddampersusingneural

networks

Table1.ParametersforthemodelofMR uiddamperRD-1005-1(LaiandLiao2002).ParameterValueParameterValuec784Nsm 1

c0aα12441Nm 1

0b1803NsV 1m 1kαa38430NV 1m 103610Nm 1c14649Nsm 1

γb136c1a2059320m 21b34622NsV 1m 1βA58020m 2k840Nm 1n2

x10

0.0245m

η

190s 1

3.NeuralnetworkmodelingofMR uiddampers

Inthelate1980s,conclusiveproofsweregiventhatmultilayerfeedforwardneuralnetworksarecapableofapproximatinganycontinuousfunctiononacompactset.Sointhepastdecade,neuralnetworkshavenotonlybeensuccessfullyusedinsolvingcomplexproblemsinpatternrecognitionandtimeseriesprediction,butalsohavebeenproposedfortheidenti cationandcontrolofnonlineardynamicalsystems(NarendraandParthasarathy1990,YangandLee1997,ChangandRoschke1998).Theidenti cationprocedureforMR uiddamperscanbeasillustratedin gure3,inwhichtheinputu1(k)(consistingofthedisplacementandthecommandvoltage)issimultaneouslyconnectedtotheMR uiddamperandtheneuralnetworkmodeltobetrained.u2(k)isonlyconnectedtotheneuralnetworkmodel.Theinputu2(k)maybethemeasureddampingforceanditsdelays(fortheFNNmodel)orthepredicteddampingforceanditsdelays(forRNNmodel).TheoutputoftheneuralnetworkmodelF

the

(k)iscomparedwiththeoutputoftheMR uiddamperF(k)andthedifferencee(k)isusedtoadjusttheweightsandbiasesoftheneuralnetworkmodeluntila‘suf cientlysmall’conditionissatis ed.Thearchitectureoftheneuralnetworkmodeldeterminesthetrainingmethodsforandmeritsofusingneuralnetworks.

Inthefollowingtwosubsections,themodelsofMR uiddampersusingmultilayerFNNandRNNmodelswillbediscussed.

3.1.ModelingofMR uiddamperswithFNN

BecausetheFNNiscapableofapproximatinganycontinuousfunction,itcaneasilybeselectedastheidenti cationmodelforMR uiddampers.ChangandRoschke(1998)discussedthemodelingofanMR uiddamperusinganFNN.Forthepurposeofcomparisons,anFNNformodelinganMR uiddamperisalsoconsideredhere.Figure4showstheschemeoftheneuralnetwork,whichrepresentsthemappingF

(k+1)=NN[F(k),F(k 1),···,F(k IF+1),v(k),v(k 1),···,v(k Iv+1),x(k),x(k 1),···,x(k Ix+1)]

(8)

whereNN[·]denotesaneuralnetworkwithIF+Iv+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinput–outputmappingthatdescribestheMR uiddamper.Accordingtoequation(8),thedelaysofF(k),v(k),andx(k)usedasinputtotheneuralnetworkareIF 1,Iv 1,andIx 1respectively,denotedbyblocksTDL(tappeddelayline)in gure4.When

113

DHWangandWHLiao

Displacement [cm]

–Time [s]

Voltage [V]

Time [s]

Force [kN]

–Time [s]

Figure2.Thetimehistoryoftrainingdatasetsforneuralnetworkmodels:(a)displacement;(b)commandvoltage;(c)dampingforce.

Table2.Training,validation,andthetestdataset.SignalsTrainingValidationTest

DisplacementCommandvoltageForce

ab

Timeinterval(s)

00–2020–2525–30

30–3535–4040–45

45–5050–5555–60

60–6565–70

75–8070–75

80–8585–90

90–9595–100

GWN1a

GWN2b+612606sin4πt+6

Producedbymodi edBouc–Wenmodel

Gaussianwhitenoise:frequency0–3Hz,amplitude±2.5cm.Gaussianwhitenoise:frequency0–4Hz,amplitude±6V

.

Figure3.Theschemeofidenti cationfortheMR uiddamperusingtheneuralnetworkmodel.

(k)becomessuf cientlytheerrore(k)betweenF(k)andF

small,theNN[·]isconsideredtobewelltrained.

Fortheidenti cationofanMR uiddamper,afullyconnectedthree-layerfeedforwardnetworkwith18(=S1)inputlayerneurons,18(=S2)hiddenlayerneurons,and1(=S3)outputlayerneuron,asshownin gure5,hasbeenselectedtomaptheinput–outputrelationshipfortheMR uiddamper.Thetransferfunctionsoftheneuronsoftheinputlayer(layer1)andhiddenlayer(layer2)areselectedas

the114

Figure4.Theschemeofidenti cationfortheMR uiddamperusingtheFNNmodel.

hyperbolictangentsigmoidtransferfunctionwiththeform

T1(x)=T2(x)=

2

1

1+e 2x

(9)

andthetransferfunctionfortheneuronoftheoutputlayer(layer3)isselectedasthelinearfunctionwiththeform

ModelingandcontrolofMR uiddampersusingneural

networks

x e 1x(x)

12··· e 1x(x)

n e 2x(x) e e .1 2x(x) 2x(x)n ..2···... e.

Q(x) e.

...Q(x) e.

Q(x) x1

x2

···

xn

andIisanidentitymatrix.Whenthescalarµiszero,thisis

justNewton’smethod,usingtheapproximateHessianmatrix.Whenµislarge,thisbecomesgradientdescentwithasmallstepsize.Newton’smethodisfasterandmoreaccuratenearanerrorminimum,sotheaimistoshifttowardsNewton’smethodasquicklyaspossible.Thus,µisdecreasedaftereachsuccessfulstep(reductioninperformancefunction)andisincreasedonlywhenatentativestepwouldincreasetheperformancefunction.Inthisway,theperformancefunctionwillalwaysbereducedateachiterationofthealgorithm.

Thenetworkshownin gure5canbetrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthetrainingdatasetshownintable2.Theinputvectorisintheformofpq=[xqvqFq]T,inwhich

x(q) v(q)

xq=x(q 1)vq=v(q 1)

x(q 2) v(q 2)

F(q)

(15)Fq=F(q 1)

F(q 2)wherexq∈x,vq∈v,Fq∈F,andthetargetvectortq=Fq.Beforetrainingtheneuralnetwork,thetrainingdatasetshouldbepreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.

WhetherthetrainedneuralnetworkmodelcanpredicttheresponsesofMR uiddampersshouldbevalidatedthroughsimulationand/orexperiments.Inordertovalidatethenetworksproposedinthispaper,aseriesofvalidationdatasetsarede nedintable3.PredicteddampingforcesfortheMR uiddamperusingthetrainedFNNmodelandthemodi edBouc–Wenmodelwiththevalidationset1(k=2)areshownin gure6,inwhichthedampingforceversustime,thedisplacement,andthevelocityareplotted.ItisclearthatthetrainedFNNcanaccuratelypredictthedampingforceifbothinputandoutputinformationoftheMR uiddampercanbeaccessedbecausethenetworkusesthemeasureddampingforcefortrainingandvalidation.Thatistosay,monitoringoftheforceintheMR uiddamperisneededwhentheabovetrainedFNNmodelisused,whichdetersonefromusingtheFNNmodelinpracticalsituations.

3.2.ModelingofMR uiddamperswithRNN

AlthoughtheFNNmodeldiscussedintheabovesubsectioncanaccuratelypredictthedampingforceofanMR uiddamper,theinputandoutputinformationfortheMR uiddamperneedstobeassessedduringthetrainingandpredictionstagesoftheneuralnetwork,whichrestrictstheusageoftheneuralnetworkmodel.Whenusingtheneuralnetworkmodeltopredictthedampingforceonline,itisadvantageousnottomonitorthedampingforceusingsensors,whichneedtobeimplementedbyinstallingoneforcesensorinserieswitheachMR uid

115

DHWangandWH

Liao

Figure6.ThedampingforcepredictedusingtheFNNmodel.

Table3.De nitionofvalidationdatasets.

Validationset123456

ab

Displacement(cm)sin(2kπt)bsin(2kπt)bAsin(4πt)dsin(4πt)GWNeGWNe

Voltage(V)

1.5

GWNc+1.51.5

1.5+0.75sin(2kπt)b1+GWNc

1.5+0.75sin(2kπt)b

Forcea(N)Producedbymodi edBouc–Wenmodel

Timespan(s)666666

Onlyforvalidationofinversemodeling.k=0.5,1.0,1.5,···,5.0.c

Gaussianwhitenoise(frequency:0–2Hz;amplitude:±2).d

A=0.2,0.4,0.6,···,2.0.e

Gaussianwhitenoise(frequency:0–2Hz;amplitude:±2).

damper.Inthissubsection,anRNNisutilizedandtrainedtopredicttheforceoftheMR uiddamper.Inthisway,theforceintheMR uiddamperisonlyneededduringthetrainingstageoftheneuralnetworkmodel.Whenusingthetrainedneuralnetworkmodeltopredictthedampingforce,theforcesensorisnolongerneeded.

Inviewoftheabovediscussion,anRNNmodelisused,inwhichtheoutputoftheneuralnetworkmodelisdelayedandfedbacktoitsinputlayer.Figure7showstheschemeoftheRNNmodelforanMR uiddamperandthemappingoftheneuralnetworkisrepresentedas (k+1)=NN[F (k),F (k 1),···,F (k OF+1),F

v(k),v(k 1),···,v(k Iv+1),x(k),

(16)x(k 1),···,x(k Ix+1)]

whereNN[·]denotesaneuralnetworkwithIv+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinput–outputmappingthatdescribestheMR uiddamper.OFisthenumberofdelaysthattheoutputofneuralnetworkfeedsbacktotheinputlayer.

Exceptthattheoutputoftheneuralnetworkisdelayedandfedbacktotheinputlayeroftheneuralnetwork,

the116

Figure7.Theschemeofidenti cationfortheMR uiddamperusingtheRNNmodel.

architectureoftheRNN,asshownin gure8,isbasicallythesameasthatoftheFNNshownin gure5.Thetransferfunctionfortheneuronoftheoutputlayerisselectedasthelinearfunctionwiththeformgivenbyequation(10)andthe

ModelingandcontrolofMR uiddampersusingneural

networks

Figure9.ThedampingforcepredictedusingtheRNNmodel(validationdataset1,k=2).

transferfunctionsfortheneuronsoftheinputandhiddenlayersareselectedasthehyperbolictangentsigmoidtransferfunctionwiththeformgivenbyequation(9),soequation(16)canberewrittenas

(k)+b1)+b2)+b3) (k+1)=T3(W3T2(W2T1(W1P+LW1FF

(17)

123

whereW,W,andWaretheweightmatricesofthethreelayers,respectively.LW1∈ S1×OFisthelayerweightmatrix.b1,b2,andb3arethebias

(k)=matricesofthosethreelayersrespectively,andF

(k)F (k 1)F (k 2)···F (k 5)]T.[F

Theinputvectorisintheformofpq=[xqvq]T,andthetargetvectortq=Fq,inwhichxqandvqaregivenbyequation(15),andFq∈F.Beforetrainingtheneuralnetwork,thetrainingdatasetispreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.

InordertosavethememoryusedforcalculatingthefullJacobianwhentheRNNmodelistrained,theJacobian

isdividedintotwoequalsubmatrices.SoJT(X)J(X)(theapproximateHessianmatrix)inequation(14)iscalculatedusingthefollowingequation:

JTTT

(18)J(X)J(X)=[J1J2]1.

J2ThedampingforceoftheMR uiddamperpredictedusingthetrainedRNNmodelwithvalidationset1(k=2)isshownin gure9.ThedampingforceoftheMR uiddamperpredictedusingthetrainedRNNmodelwithvalidationset5(refertotable3)isshownin gure10.

ItcanbeseenthatthetrainedRNNmodelcanpredictthedampingforceoftheMR http://paringtheresultsshownin gures6and9,theFNNmodelcanpredictthedampingforcemoreaccuratelythantheRNNmodel.However,thepredictionusingtheFNNmodelneedstomonitorthedampingforceoftheMR uiddamperonlineandthenfeedbacktotheinputoftheneuralnetworkmodel.Bycontrast,

117

DHWangandWH

Liao

Figure10.ThedampingforcepredictedusingtheRNNmodel(validationdataset

5).

(a)(b)

Figure11.TheschemeoftheinversemodelingfortheMR uiddamperusingneuralnetworks:(a)forcetocommandvoltagemodel;(b)forcetodisplacementmodel.

thepredictionusingtheRNNneednotmonitorthedampingforceoftheMR uiddamper,whichmayimprovereliabilityofthesystemandreducethecostofimplementation.

TheforcepredictionofMR uiddampersusingthetrainedneuralnetworkmodelswillbeexploredinsection5.

4.InversedynamicmodelingofMR uiddampers

Inversemodelingusingneuralnetworksavoidstheneedforexplicitlyinvertingthefunctionofthesystem.BecausethedampingforceofanMR uiddamperisnonlinearlyrelatedwithdisplacementacrossthedamperandthecommandvoltage,theinversemodelingoftheMR uiddamperconsistsofthefollowingtwocases:

(i)thedampingforcetocommandvoltagewhenthepredictedoutputoftheneuralnetworkmodelu (k)=v( k)asshownin gure11(a);

(ii)thedampingforcetodisplacementwhenthepredicted

outputoftheneuralnetworkmodelu (k)=x (k)asshownin gure11(b).Inversemodelingofthedampingforcetocommandvoltageordisplacementinvolvestraininganeuralnetwork118

modelarrangedinaccordancewiththecon gurationshownin gure11,inwhichu1(k)hasthesamemeaningasde nedin gure3.WhentheinverserelationshipismodelledbytheRNN,thepredictedoutputu (k)fromtheRNNshouldbefedbacktoitsinputu2(k)(=u (k)),whichisdenotedbythedashedlinein gure11.AsforthemodelingwiththeFNN,u2(k)istheactualvaluethatneedstobepredictedbytheFNN.Byminimizingtheerrore(k)betweenthepredictedoutputu (k)oftheneuralnetworkmodelandthetargetinputu(k),theneuralnetworkmodelapproximatestheinversedynamicsoftheMR uiddamper.

Theresultsofcase(ii)canbeusedtopredictthedisplacementacrosstheMR uiddamperwhenthedampingforcecanbeaccessed,whichisnotthefocusinthispaper.Theresultsofcase(i)canbeusedtorealizecontrolofanMR uiddamper,whichwillbediscussedindetailinsection5.4.1.ModelinginversedynamicsofMR uiddamperswiththeFNN

ForinversemodelingofanMR uiddamperusingtheFNN,theneuralnetworkshownin gure12istrainedtoapproximatetheinput–outputbehavioroftheMR uiddamper.Forfurther

ModelingandcontrolofMR uiddampersusingneural

networks

hasbeenselectedtomaptheinput–outputrelationshipoftheMR uiddamper.Thetransferfunctionsfortheneuronsoftheoutputlayerareselectedasalinearfunctionwiththeformgivenbyequation(10)andthetransferfunctionsoftheneuronsoftheinputandhiddenlayersareselectedasahyperbolictangentsigmoidtransferfunctionwiththeformgivenbyequation(9),soequation(19)canberewrittenas

v( k+1)=T3(W3T2(W2T1(W1P+b1)+b2)+b3)

(20)

whereW1,W2,W3areweightmatrices;b1,b2,andb3arebiasmatricesofthreelayers,respectively;andT1andT2aregivenbyequation(12).

Thenetworkshownin gure13canbetrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthetrainingdatasetshownin gure2.Theinputvectorisintheformofpq=[xqFqvq]T,andtheoutputvectoristq=vq,inwhichxq,vq,andFqaregivenbyequation(15).Beforetrainingtheneuralnetwork,thetrainingdatasetispreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.

ThevalidationschemefortheinversemodelingusingFNNmodelsforMR uiddamperswithSIMULINKisshownin gure14.Inthis gure,SIMULINKblockslabelledasMRD1andMRD2arecreatedonthebasisofthemodi edBouc–Wenmodel,whichisusedtorepresenttheMR uiddamperinthevalidationprocess.TheblocklabelledasMRD NN INVERSErepresentsthetrainedFNNmodel,whichistobevalidated.Thedisplacement,thecommandvoltage,andthedampingforceproducedbyMRD1areinputstofeedintotheinverseFNNmodeltogeneratethecommandvoltagesignal,whichisthenfedintotheMRD2togetherwiththedisplacementtoproducethepredicteddampingforce.Thevalidationprocessincludescomparisonsbetweenthepredictedcommandvoltageandtheinputcommandvoltage,thedampingforcepredictedbyMRD2andthetargetdampingforcebyMRD1.Onlyonevalidationcaseispresentedhere,asshownin gure15.Thedisplacementandcommandvoltageinputaregivenbythevalidationset5.Observing gure15,notonlydoesthepredictedcommandvoltagecoincidewiththeinputcommandvoltage,butalsothedampingforcecalculatedusingthepredictedcommandvoltagecoincideswiththedampingforceobtainedwiththeinputcommandvoltage.

Figure14.ThevalidationschemefortheinversemodelingwiththeFNNmodelfortheMR uiddamper.

119

DHWangandWHLiao

Voltage [V]

Time [s]

Force [N]

––Time [s]

Figure15.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel:(a)thecommandvoltagepredictedusingtheFNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheFNNmodel.

AlthoughtheinverseFNNmodelshowsgoodaccuracy,theobviousdisadvantageliesintheneedforcommandvoltageinputduringprediction;thereforethemodelcanonlybeusedwhenthecommandvoltagecanbeobtainedbeforehand.4.2.ModelinginversedynamicsoftheMR uiddamperwiththeRNN

InordertorealizetheinversemodelingoftheMR uiddamper,amultilayerRNNisselected,asshownin gure16.TheselectedRNNmodelcanberepresentedasamapping:v( k+1)=NN[v( k),v( k 1),···,v( k Ov+1),

F(k),F(k 1),···,F(k IF+1),

x(k),x(k 1),···,x(k Ix+1)]

(21)

whereNN[·]denotesaneuralnetworkwithIF+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinverseinput–outputmappingthatdescribestheinversedynamicbehavioroftheMR uiddamper.Ovisthenumberofdelaysintheneuralnetworkmodel.

ThearchitectureoftheRNNusedhereisbasicallythesameasthatoftheRNNmodeldiscussedinsection3exceptthattheoutputoftheneuralnetworkisthecommandvoltage,whichisdelayedandfedbacktotheinputlayeroftheneuralnetworkasshownin gure17.TheinputoftheneuralnetworkmodelisalsocomposedofthedisplacementandtheforceoutputoftheMR uiddamper.Thetransferfunctionfortheneuronoftheoutputlayerisselectedasalinearfunction,andthetransferfunctionsfortheneuronsoftheinputandhiddenlayersarehyperbolictangentsigmoidfunctionswiththeformgivenbyequation(9),soequation(21)canberewrittenas (k)+b1)+b2)+b3)

v( k+1)=T3(W3T2(W2T1(W1P+LW1v

(22)120

Figure16.TheschemeoftheRNNformodelingtheinversedynamicsoftheMR uiddamper.

whereW1,W2,andW3aretheweightmatricesofthethreelayers,respectively.LW1∈ OF×S1isthelayerweight.b1,b2,andb3arethebiasmatricesofthosethreelayersrespectively.

(k)=[v(Andv k)v( k 1)v( k 2)···v( k 5)]T.Thenetworkshownin gure17istrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthedatasetshownin gure2,inwhichtheinputvectorisintheformpq=[xqFq]T,andtheoutputvectoristq=vq,wherexqandvqaregivenbyequation(15),andFq∈F.Beforetrainingtheneuralnetworkmodel,thetrainingdatasetshouldbealsopreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.Whenthenetworkisbeingtrained,theJacobianisalsodividedintotwoequalsubmatricestosavememoryandtheapproximateHessianmatrixiscalculatedusingequation(18).

ThevalidationschemeoftheinverseRNNmodelfortheMR uiddamperwithSIMULINKisshownin gure18,which

ModelingandcontrolofMR uiddampersusingneural

networks

Figure18.ThevalidationschemefortheinversemodelingwiththeRNNmodelfortheMR uiddamper.

isquitesimilarto gure14exceptthatthecommandvoltageisnotneededtofeedtoMRD NN INVERSEblock.MRD1andMRD2areblocksbasedonthemodi edBouc–Wenmodel.TheblocklabelledasMRD NN INVERSEiscreatedonthebasisofthetrainedneuralnetworkmodel.Fromthis gure,thedisplacementaccompaniedbytheforcegeneratedbyMRD1isfedtoMRD NN INVERSEtogeneratethepredictedcommandvoltage,thenthedisplacementaccompaniedbythepredictedcommandvoltageisfedtoMRD2togeneratethedampingforce.ThedifferencebetweenthepredictedcommandvoltageandtheinputcommandvoltageaswellasthedampingforcesproducedbyMRD2andMRD1willbevalidated.

Fourvalidationcasesarediscussedinthissubsection.The rstvalidationcaseisshownin gure19.ThedisplacementisasinusoidalsignalandthecommandvoltageisaGaussianwhitenoisesignal(thevalidationdataset2,k=3,asshownintable3).From gure19(a),thepredictedcommandvoltagecantrackthetargetcommandvoltagereasonablywell.Itisinterestingtoseefrom gure19(b)thatthedampingforceproducedbythepredictedcommandvoltage(MRD2)coincideswiththedampingforceproducedbythetargetcommandvoltage(MRD1).

ThesecondvalidationcaseusestheGaussianwhitenoisedisplacementandsinusoidalvoltageinput(validationset6,k=3)(see gure20).From gure20(a),weseethatthepredictedcommandvoltagecannottrackthetargetcommandvoltageverywell;however,thedampingforceproducedbythepredictedcommandvoltagetracksthedampingforceviathetargetcommandvoltagewell(see gure20(b)).

Figure21showstheresultsforthethirdvalidationcase,forwhichthevalidationdataset1(k=3)intable3isused.From gure21(a),weseethatthepredictedcommandvoltagecannottrackaccuratelytheconstanttargetcommandvoltage(vDE=1.5V).Althoughaperiodicallyvariedcommandvoltageisproducedforthegivenconstantcommandvoltage,thedampingforcesproducedfromthepredictedcommandvoltageandtheconstantcommandvoltagecoincidewitheachother.

Thelastvalidationcaseispresentedin gure22,wherevalidationdataset5intable3isused.Validationdataset5isapartofthetrainingdataset.From gure22(a),weseethatthepredictedcommandvoltagedoesnotcompletelycoincidewiththetargetcommandvoltage,butthedampingforcesgeneratedbythepredictedcommandvoltageandthetargetcommandvoltagecompletelycoincidewitheachother(see gure22(b)).ThisisaveryimportantrequirementforusingthenetworkmodeltocontrolthedampingforceofanMR uiddamper.

Fromtheabovevalidationresults,weseethattheinversedynamicmodelingaccuracyusingtheRNNmodelisnotasgoodasthatusingtheFNNmodel.Itisfortunatethatthedampingforcegeneratedbythepredictedcommandvoltagecantrackthedampingforcegeneratedbythetargetcommandvoltagewell.ThiscansatisfytheneedsfortheinversemodelofMR uiddamperbecausetheinversemodelingnetworkismainlyusedtocontrolthedampingforceoftheMR uid

121

DHWangandWHLiao

Voltage [V]

Time [s]

Force [N]

––Time [s]

Figure19.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset2,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.

Voltage [V]

Time [s]

Force [N]

––Time [s]

Figure20.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset6,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.

damper.TrackingthedampingforceoftheMR uiddamperusingtheinversedynamicneuralnetworkmodelwillbediscussedinsection5.2.

5.Applicationsofneuralnetworkmodels

Intheabovesections,thedirectidenti cationandinversemodelingoftheMR uiddamperusingFNNandRNNmodelsareproposed.Inthissection,applicationsoftrainedneural122

networkmodelsoftheMR uiddamperforforcepredictionandgenerationproblemsarediscussed.

Inthepastdecade,manyresearchershaveexploredthefeasibilityofsemi-activevibrationcontrolofstructuresusingMR uiddampers.AlthoughMR uiddampersarehighlynonlinear,thedampingforcecanbecontrolledbywell-designedcontrolalgorithms.Atypicalsemi-activecontrolsystemschemeusinganMR uiddampertocontrolvibrationofastructureisshownin gure23.

ModelingandcontrolofMR uiddampersusingneuralnetworks

Voltage [V]

Time [s]

Force [N]

––

Time [s]

Figure21.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset1,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.

Voltage [V]

Time [s]

Force [N]

––Time [s]

Figure22.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset5):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.

Onekeyfeaturein gure23isthatthesemi-activecontrolsystemusingMR uiddampersconsistsofasystemcontrollerandadampercontroller.Thesystemcontrollergeneratesthedesireddampingforceaccordingtothedynamicresponsesoftheplantwhilethedampercontrolleradjuststhevoltagetotrackthedesireddampingforce.Theotherfeaturein gure23isthatthedampingforceoftheMR uiddampershouldbemonitoredand/orpredictedandfedtothedampercontrollertogeneratethecommandvoltageonthebasisofthedesired

dampingforcegeneratedbythesystemcontroller.Therefore,predictionofthedesireddampingforceandcommandvoltagegenerationaretwoimportantaspectsforapplyingMR uiddamperstophysicalstructures.

5.1.ForcepredictionfortheMR uiddamperusingneuralnetworkmodels

Itisverydif culttocontrolthedampingforceofanMR uiddamperbecauseofthesemi-activenatureandthenonlinear

123

DHWangandWHLiao

Figure23.Thesemi-activecontrolsystemwiththeMR uiddamper.

relationshipsbetweenthecommandvoltageandthedampingforce.Inordertoovercomethisdif culty,thedesireddampingforceisusuallyobtainedthroughasuitablecontrolalgorithm(systemcontroller).However,theforcegeneratedbytheMR uiddampercannotbecommandeddirectly;onlythevoltageappliedtothecurrentdriverfortheMR uiddampercanbedirectlycontrolled(Dykeetal1996),wheretheactualdampingforceoftheMR uiddamperneedstobemonitoredonlineandthecommandvoltagevariesbetweenlimitedvoltagelevels.TheforcesensorneedstobeinserieswiththeMR uiddamper,whichreducesreliabilityandincreasescost.WhentheMR uiddamperisusedtoattenuatesystemvibration,theparametersofthesystemshouldbemonitoredandfedbacktothecontroller.Ifthisinformationisusedtopredictthedampingforceusingthetrainedneuralnetworkmodel,thecostofthesystemcanbereducedandthereliabilityofthesystemcanbeimproved.NeuralnetworkmodelsfortheMR uiddamperproposedin gures4and7canbeusedtopredictthedampingforceoftheMR uiddamper.Theaccuracyofthepredictioncanbeimprovedthroughthoroughtraining.Referto gures6,9,and10forthepredictionperformanceoftheneuralnetworkmodels.

5.2.ForcecommandoftheMR uiddamperusingneuralnetworkmodels

5.2.1.TheexistingforcecontrollerwiththeHeavisidestepfunction.Thedif cultyforgeneratingthedesireddampingforceoftheMR uiddamperhasbeendiscussed.WhenthedesiredandactualdampingforcesoftheMR uiddamperareknown,Dykeetal(1996)proposedamethodthatusesaHeavisidestepfunctionasfollows:

v=VmaxH{(FDE FAC)FAC}

(23)

5.2.2.Theforcecontrollerusingneuralnetworkmodels.Inthissubsection,theneuralnetworkmodelfortheinversedynamicsoftheMR uiddamperisusedtogeneratethecommandvoltageaccordingtothedesireddampingforce.Theschemeofthesystemisillustratedin gure25,inwhichFDE(k)representsthedesiredforcethattheMR uiddampershouldgenerate,andFAC(k)representstheactualdampingforcethattheMR uiddamperactuallyproduces.Theblockdenotedas‘NeuralNetwork’representstheinverseneuralnetworkmodeloftheMR uiddamper,whichistrainedinsection4.Infact,theinverseneuralnetworkmodeloftheMR uiddamperin gure25actsasadampercontrollerasshownin gure23.IfaninverseFNNmodelisused,theactualdampingforceneedstobemonitoredbyaforcetransducerandfedbacktotheinputoftheFNNmodel,whichisshownbythedashedlinein gure25.TheSIMULINKblockdiagramusingtheinverserecurrentneuralnetworkmodelisshownin gure24(b).5.2.3.Discussionsonthedampercontrollers.Inordertovalidatethedampercontrollers,thedesireddampingforcegivenbyequation(24)isconsideredtobeproducedunderthedisplacementgivenbyequation(25):

FDE=1200(sin4πt)

π

x=sin4πt .

2

(24)(25)

whereVmaxisthevoltagetothecurrentdriverassociatedwithsaturationofthemagnetic eldintheMR uiddamper,andH(·)istheHeavisidestepfunction.FDEandFACarethedesireddampingforcegeneratedbythesystemcontrollerandtheactualdampingforceoftheMR uiddamper.

In gure24(a),thedampercontrollerusingtheHeavisidestepfunctionisshownandthevalidationresultsarediscussedinsection5.2.3.124

Thevalidationresultsforthedampercontrollersareshownin gure26.In gure26(a),thecontrolleddampingforcesobtainedusingtheinverseneuralnetworkmodelandHeavisidestepfunctionarecomparedtothedesireddampingforce.ItcanbeseenthatthedampingforcegeneratedbytheHeavisidestepfunctioncontrollercoincideswiththedesireddampingforce,whichindicatesthatthedampingforcecanbecompletelycontrollableunderthiscondition.Alsothedampingforceproducedbytheneuralnetworkcontrollercantrackthedesireddampingforceonthewhole,butthedifferencebetweenthecontrolledanddesireddampingforcesislargerthanthatwiththeHeavisidestepfunctioncontroller.

In gure26(b),thecommandvoltagesproducedbythecorrespondingdampercontrollersarealsoshown.The

ModelingandcontrolofMR uiddampersusingneuralnetworks

(a)

Figure24.TheforcecontrollerfortheMR uiddamper:(a)theschemeusingtheHeavisidestepfunction;

(b)theschemeusingtheinverseneuralnetworkmodel.

Figure25.Theschemeofthecontrollerfortrackingthedesireddampingforceviatheinversedynamicneuralnetworkmodel.

commandvoltageproducedbytheHeavisidestepfunctioncontrollerisadiscretepulsewithchangingtimewidth,whichneedsafastdynamicresponseofthecurrentdriverfortheMR uiddamper.Thecommandvoltageproducedbytheneuralnetworkmodelisacontinuouslyvaryingvoltage,whichisbene cialtothecurrentdriverfortheMR uiddamper.

6.Conclusionsandfuturework

Inthispaper,directidenti cationandinversedynamicmodelingofanMR uiddamperusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage.Theinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageonthebasisof

thedesireddampingforce.ThearchitecturesandthetrainingmethodsforthedirectandinverseneuralnetworkmodelsfortheMR uiddamperarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceofanMR uiddamper.

TheneuralnetworkmodelsdevelopedfortheMR uiddamperarevalidatedandtheirperformancesareevaluated.ValidationresultsindicatethattheproposeddirectdynamicmodelusinganRNNcanbeusedtopredictthedampingforceaccuratelyonlineandtheinversedynamicmodelusinganRNNcanbeusedtogeneratethecommandvoltagewhentheMR uiddamperisusedinthesemi-activemode,whichprovidesanewmethodforthedampercontrolleroftheMR uiddamper.Notonlyaretheresultssatisfactory,butthisapproachalsosimpli esthecontrollerarchitecture.Furthermore,theRNNmodelfortheMR uiddampergeneratesasmoothercommandvoltagethanthatwiththeHeavisidestepfunction.

TheresultspresentedinthispaperarestillpreliminaryformodelingandcontroloftheMR uiddamperusingneuralnetworks;moreresearchworkisneededinordertoimplementneuralnetworksforpracticalapplicationswithMR uiddampers.Inordertoassurestabilityofthecontrolledsystem,theon-linelearningoftheneuralnetworkandinverseneuralnetworkmodelsthatareusedtoadapttotheuniquecharacteristicsoftheMR uiddamperunderdifferentconditionsareworthfurtherinvestigation.Moreover,experimentalvalidationsusingneuralnetworkchipsshouldalsobeperformed.

125

Modeling and control of magnetorheological fluid dampers usi.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219