Modeling and control of magnetorheological fluid dampers usi
时间:2025-04-02
时间:2025-04-02
HomeSearchCollectionsJournalsAboutContact usMy IOPscience
Modeling and control of magnetorheological fluid dampers using neural networks
This article has been downloaded from IOPscience. Please scroll down to see the full text article.2005 Smart Mater. Struct. 14 111
(http:///0964-1726/14/1/011)
View the table of contents for this issue, or go to the journal homepage for more
Download details:
IP Address: 59.72.87.85
The article was downloaded on 09/10/2012 at 11:52
Please note that terms and conditions apply.
INSTITUTEOFPHYSICSPUBLISHINGSmartMater.Struct.14(2005)111–126
SMARTMATERIALSANDSTRUCTURES
doi:10.1088/0964-1726/14/1/011
Modelingandcontrolof
magnetorheological uiddampersusingneuralnetworks
DHWangandWHLiao1
SmartMaterialsandStructuresLaboratory,DepartmentofAutomationandComputer-AidedEngineering,TheChineseUniversityofHongKong,Shatin,NT,HongKongE-mail:whliao@cuhk.edu.hk
Received27February2003,in nalform3July2004Published7December2004
http:///SMS/14/111
Abstract
Duetotheinherentnonlinearnatureofmagnetorheological(MR) uiddampers,oneofthechallengingaspectsforutilizingthesedevicesto
achievehighsystemperformanceisthedevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheiruniquecharacteristics.Inthispaper,thedirectidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage,andtheinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageaccordingtothedesireddampingforcethroughsupervisedlearning.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMR uiddampersarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceoftheMR uiddamper.Moreover,validationmethodsfortheneuralnetworkmodelsdevelopedareproposedandusedtoevaluatetheirperformance.Validationresultswithdifferentdatasetsindicatethattheproposeddirectidenti cationdynamicmodelusingtherecurrentneuralnetworkcanbeusedtopredictthedampingforceaccuratelyandtheinverseidenti cationdynamicmodelusingtherecurrentneuralnetworkcanactasadampercontrollertogeneratethecommandvoltagewhentheMR uiddamperisusedinasemi-activemode.
(Some guresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
1.1.MR uiddampers
Magnetorheological(MR) uidsaresuspensionsthatexhibitrapid,reversible,andtunabletransitionfromafree- owingstatetoasemi-solidstateupontheapplicationofanexternalmagnetic eld.Thesematerialsdemonstratedramaticchangesintheirrheologicalbehaviorinresponsetoamagnetic eld(CarlsonandWeiss1994).MR uidshaveattracted
1Authortowhomanycorrespondenceshouldbeaddressed.
considerableinterestrecentlybecausetheycanprovideasimpleandrapidresponseinterfacebetweenelectroniccontrolsandmechanicalsystems(Kordonsky1993a,1993b).TheMR uiddampers,whichutilizetheadvantagesofMR uids,aresemi-activecontroldevicesthatarecapableofgeneratingamagnitudeofforcesuf cientforlarge-scaleapplications,whilerequiringonlyabatteryforpower(Dykeetal1996,Spenceretal1997).Additionally,thesedevicesofferhighlyreliableoperationsandtheirperformancesarerelativelyinsensitivetotemperature uctuationsorimpuritiesinthe uid.Inrecentyears,researchintoanddevelopmentof
111
0964-1726/05/010111+16$30.00©2005IOPPublishingLtdPrintedintheUK
DHWangandWHLiao
MR uiddampersandtheirapplicationshavebeenattractivetomanyresearchers.Already,a20tonMR uiddamperprototypehasbeendevelopedandtestedinthelaboratory(Spenceretal1998)andapplicationsofMR uiddamperscanbefoundovertherangefromcivilstructuressuchasbuildingsandbridges(Dykeetal1996,Housneretal1997,Spenceretal1998)toautomobiles(Choietal2000)andrailwayvehicles(LiaoandWang2003).
DuetotheinherentnonlinearnatureofMR uiddampers,oneofthechallengingaspectsforachievingahighlevelofperformanceisdevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheuniquecharacteristicsofMRdevices.
1.2.ThemodelingchallengeforMR uiddampers
Recently,bothnon-parametricandparametricmodelshavebeenproposedfordescribingthebehaviorofMR uiddampers.Parametricmodelsbasedonmechanicalidealizationshavebeenconsideredbyseveralresearchers(Spenceretal1997,Wereleyetal1998,Lietal2000).Spenceretal(1997)proposedthemodi edBouc–WenmodelfordescribingbehaviorofanMR uiddamper,inwhich14parametersneedtobedeterminedthroughcurve ttingofexperimentaldata,whichisverytime-consuming(LaiandLiao2002).Pangetal(1998)discussedfourmodelsfordescribingthebehaviorofMR uiddampers,namely:(1)theBinghamplasticmodel,(2)thebiviscousmodel,(3)thehystereticbiviscousmodel,and(4)theviscoelastic–plasticmodel;andLietal(2000)testedtheabovemodelsforthefrequencyrangeupto12Hz.TheseparametrizedmodelscanmodelthedynamicsofMR uiddamperswithinalimitedrange.
However,parametricidenti cationmethodsrequireassumptionsasregardsthestructureofthemechanicalmodelthatsimulatesbehavior.Onceamodelisselected,thevaluesofsystemparametersaredeterminedinsuchawaythattheerrorbetweentheexperimentalandthesimulatedresponsesisminimized.Theapproachcouldbedivergentifthestartingassumptionsforthestructureofthemodelare awed,orifproperconstraintsarenotappliedtotheparameters.Unrealisticparameterssuchasnegativemassorstiffnessmaybeobtained.Non-parametricmethodscouldavoidsomepitfallsoftheparametricapproachesformodeling,whicharerobustandapplicabletolinear,nonlinear,andhystereticsystems(EhrgottandMasri1992).FormodelingMR uiddampers,ChangandRoschke(1998)proposedanon-parametricmodelusingneuralnetworks,inwhichafeedforwardneuralnetwork(FNN)isused.TrainingandpredictionofthenetworkrelyoninputandoutputinformationonMR uiddampers.SchurterandRoschke(2000)investigatedthemodelingofMR uiddamperswithanadaptiveneuro-fuzzy …… 此处隐藏:35682字,全部文档内容请下载后查看。喜欢就下载吧 ……