Modeling and control of magnetorheological fluid dampers usi
发布时间:2024-11-17
发布时间:2024-11-17
HomeSearchCollectionsJournalsAboutContact usMy IOPscience
Modeling and control of magnetorheological fluid dampers using neural networks
This article has been downloaded from IOPscience. Please scroll down to see the full text article.2005 Smart Mater. Struct. 14 111
(http:///0964-1726/14/1/011)
View the table of contents for this issue, or go to the journal homepage for more
Download details:
IP Address: 59.72.87.85
The article was downloaded on 09/10/2012 at 11:52
Please note that terms and conditions apply.
INSTITUTEOFPHYSICSPUBLISHINGSmartMater.Struct.14(2005)111–126
SMARTMATERIALSANDSTRUCTURES
doi:10.1088/0964-1726/14/1/011
Modelingandcontrolof
magnetorheological uiddampersusingneuralnetworks
DHWangandWHLiao1
SmartMaterialsandStructuresLaboratory,DepartmentofAutomationandComputer-AidedEngineering,TheChineseUniversityofHongKong,Shatin,NT,HongKongE-mail:whliao@cuhk.edu.hk
Received27February2003,in nalform3July2004Published7December2004
http:///SMS/14/111
Abstract
Duetotheinherentnonlinearnatureofmagnetorheological(MR) uiddampers,oneofthechallengingaspectsforutilizingthesedevicesto
achievehighsystemperformanceisthedevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheiruniquecharacteristics.Inthispaper,thedirectidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage,andtheinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageaccordingtothedesireddampingforcethroughsupervisedlearning.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMR uiddampersarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceoftheMR uiddamper.Moreover,validationmethodsfortheneuralnetworkmodelsdevelopedareproposedandusedtoevaluatetheirperformance.Validationresultswithdifferentdatasetsindicatethattheproposeddirectidenti cationdynamicmodelusingtherecurrentneuralnetworkcanbeusedtopredictthedampingforceaccuratelyandtheinverseidenti cationdynamicmodelusingtherecurrentneuralnetworkcanactasadampercontrollertogeneratethecommandvoltagewhentheMR uiddamperisusedinasemi-activemode.
(Some guresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
1.1.MR uiddampers
Magnetorheological(MR) uidsaresuspensionsthatexhibitrapid,reversible,andtunabletransitionfromafree- owingstatetoasemi-solidstateupontheapplicationofanexternalmagnetic eld.Thesematerialsdemonstratedramaticchangesintheirrheologicalbehaviorinresponsetoamagnetic eld(CarlsonandWeiss1994).MR uidshaveattracted
1Authortowhomanycorrespondenceshouldbeaddressed.
considerableinterestrecentlybecausetheycanprovideasimpleandrapidresponseinterfacebetweenelectroniccontrolsandmechanicalsystems(Kordonsky1993a,1993b).TheMR uiddampers,whichutilizetheadvantagesofMR uids,aresemi-activecontroldevicesthatarecapableofgeneratingamagnitudeofforcesuf cientforlarge-scaleapplications,whilerequiringonlyabatteryforpower(Dykeetal1996,Spenceretal1997).Additionally,thesedevicesofferhighlyreliableoperationsandtheirperformancesarerelativelyinsensitivetotemperature uctuationsorimpuritiesinthe uid.Inrecentyears,researchintoanddevelopmentof
111
0964-1726/05/010111+16$30.00©2005IOPPublishingLtdPrintedintheUK
DHWangandWHLiao
MR uiddampersandtheirapplicationshavebeenattractivetomanyresearchers.Already,a20tonMR uiddamperprototypehasbeendevelopedandtestedinthelaboratory(Spenceretal1998)andapplicationsofMR uiddamperscanbefoundovertherangefromcivilstructuressuchasbuildingsandbridges(Dykeetal1996,Housneretal1997,Spenceretal1998)toautomobiles(Choietal2000)andrailwayvehicles(LiaoandWang2003).
DuetotheinherentnonlinearnatureofMR uiddampers,oneofthechallengingaspectsforachievingahighlevelofperformanceisdevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheuniquecharacteristicsofMRdevices.
1.2.ThemodelingchallengeforMR uiddampers
Recently,bothnon-parametricandparametricmodelshavebeenproposedfordescribingthebehaviorofMR uiddampers.Parametricmodelsbasedonmechanicalidealizationshavebeenconsideredbyseveralresearchers(Spenceretal1997,Wereleyetal1998,Lietal2000).Spenceretal(1997)proposedthemodi edBouc–WenmodelfordescribingbehaviorofanMR uiddamper,inwhich14parametersneedtobedeterminedthroughcurve ttingofexperimentaldata,whichisverytime-consuming(LaiandLiao2002).Pangetal(1998)discussedfourmodelsfordescribingthebehaviorofMR uiddampers,namely:(1)theBinghamplasticmodel,(2)thebiviscousmodel,(3)thehystereticbiviscousmodel,and(4)theviscoelastic–plasticmodel;andLietal(2000)testedtheabovemodelsforthefrequencyrangeupto12Hz.TheseparametrizedmodelscanmodelthedynamicsofMR uiddamperswithinalimitedrange.
However,parametricidenti cationmethodsrequireassumptionsasregardsthestructureofthemechanicalmodelthatsimulatesbehavior.Onceamodelisselected,thevaluesofsystemparametersaredeterminedinsuchawaythattheerrorbetweentheexperimentalandthesimulatedresponsesisminimized.Theapproachcouldbedivergentifthestartingassumptionsforthestructureofthemodelare awed,orifproperconstraintsarenotappliedtotheparameters.Unrealisticparameterssuchasnegativemassorstiffnessmaybeobtained.Non-parametricmethodscouldavoidsomepitfallsoftheparametricapproachesformodeling,whicharerobustandapplicabletolinear,nonlinear,andhystereticsystems(EhrgottandMasri1992).FormodelingMR uiddampers,ChangandRoschke(1998)proposedanon-parametricmodelusingneuralnetworks,inwhichafeedforwardneuralnetwork(FNN)isused.TrainingandpredictionofthenetworkrelyoninputandoutputinformationonMR uiddampers.SchurterandRoschke(2000)investigatedthemodelingofMR uiddamperswithanadaptiveneuro-fuzzyinferencesystem.Gangetal(2001)exploredthemodelingofMR uiddamperswithanonlinearblackboxapproach.
1.3.InversedynamicmodelingandcontrolofMR uiddampers
ControlofthedampingforceofanMR uiddamperisalsoverychallengingbecauseofthefollowingtwofeatures:(1)strongnonlinearityand(2)thesemi-activerelationship112
betweenthedampingforceandthecommandvoltage.SotheforcegeneratedbytheMR uiddampercannotbecommandeddirectly;onlythevoltageappliedtothecurrentdriverfortheMR uiddampercanbedirectlycontrolled.Inordertoovercomethesedif culties,thedesireddampingforceoftheMR uiddamperisoftendeterminedat rstonlyaccordingtothestructureresponsesthroughthesystemcontroller;thenthecommandvoltageisdeterminedbythedampercontrolleronthebasisofthedesireddampingforceandthemonitoreddampingforceoftheMR uiddamper.Dykeetal(1996)proposedamethodinwhichtheHeavisidestepfunctionisusedtocalculatethecommandvoltage.TheactualdampingforceoftheMR uiddamperneedstobemonitoredonlineandthecommandvoltagevariesbetweentwovoltagestates.
Basedontheabovediscussions,neuralnetworks,whichcanbeusedtomatchnonlinearitythroughlearning,couldbeanappropriatealternativeforthemodelingandcontrolofMR uiddampers.Inthispaper,directidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworkswillbestudied.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMRdamperswillbepresented.Theneuralnetworkmodelsdevelopedwillbevalidatedthroughnumericalexperiments.ItshouldbenotedthatadampercontrollerfortheMRdamperusingtheinverseidenti cationdynamicmodelwiththerecurrentneuralnetwork(RNN),whichcanbeusedtogeneratethecommandvoltagewhentheMRdamperisworkinginasemi-activemode,isproposedandexploredforthe http://anizationofthispaper
Thispaperisorganizedasfollows.Themodi edBouc–WenmodelforMR uiddampersisdescribedinsection2becausethetrainingdataoftheneuralnetworkmodelsinthefollowingsectionsisgeneratedbythemodi edBouc–Wenmodel.Section3dealswithdirectidenti cationofMR uiddampersusingneuralnetworks.BoththeFNNandRNNmodelsareproposedformodelingMR uiddampers,andcharacteristicsofthesetwomodelsarediscussedandcompared.Insection4,neuralnetworksformodelingtheinversedynamicsofMR uiddampersareexplored.TheperformancesoftheneuralnetworkmodelsfortheMR uiddampersarevalidated.Section5mainlydealswiththeforcepredictionandtheforcecommandfortheMR uiddamperusingthedirectidenti cationneuralnetworkmodelsandtheinverseneuralnetworkmodelstrainedinsections3and4forMR uiddampers.Insection6,conclusionsanddiscussionsonfutureworkarepresented.
2.Themodi edBouc–WenmodeloftheMR uiddamper
ThemechanicalidealizationofanMR uiddamperdepictedin gure1hasbeenshowntoaccuratelypredictbehavioroftheMR uiddamperoverabroadrangeofinputs.ThephenomenologicalmodelproposedbySpenceretal(1997)isgovernedbythefollowingequations:
F=c1y
˙+k1(x x0)(1)
Figure1.ThedynamicmodelfortheMR uiddamper.
z˙= γ|x˙ y˙||z|n 1z β(x˙ y˙)|z|n+A(x˙ y˙)
(2)y˙=
1
c[αz+c0x˙+k00+c1
(x y)](3)α=α(u)=αa+αbu(4)c1=c1(u)=c1a+c1bu(5)c0=c0(u)=c0a+c0bu
(6)u˙= η(u v)
(7)
wherexandFarethedisplacementandtheforcegenerated
bytheMR uiddamperrespectively;yistheinternaldisplacementoftheMR uiddamper;uistheoutputofa rst-order lterandvisthecommandvoltagesenttothecurrentdriver.Inthismodel,theaccumulatorstiffnessisrepresentedbyk1;theviscousdampingsobservedatlargeandlowvelocitiesarerepresentedbyc0andc1,respectively.k0ispresenttocontrolthestiffnessatlargevelocities;x0isusedtoaccountfortheeffectoftheaccumulator.αisascalingvaluefortheBouc–Wenmodel.Thescaleandshapeofthehysteresisloopcanbeadjustedbyγ,β,A,andn.Atotalof14modelparameters,whichareshownintable1(LaiandLiao2002),areobtainedtocharacterizetheRD-1005-1MR uiddamper(manufacturedbyLordCorporation)usingexperimentaldataandaconstrainednonlinearoptimizationalgorithm.
Inordertotraintheproposedneuralnetworks,appropriatetrainingdatasetsarerequired.Thetrainingdatasetsshouldcovermostsituationsofpracticalapplicationsinordertoletthetrainedneuralnetworkmodelspredictwellwhileatthesametimetheselecteddatasetsshouldbesimpletospeedupthetrainingprocess.TheselecteddatasetstobeusedtotraintheneuralnetworkmodelsforMR uiddampersareillustratedintable2,inwhichthevalidationandtestdatasetsforthenetworktrainingarealsoshown.Intable2,thedisplacementinputisaGaussianwhitenoisesignal,thecommandvoltageinputconsistsofdifferentsignalswithindifferenttimeintervals,andtheforceisproducedbythemodi edBouc–Wenmodelaccordingtothedisplacementandcommandvoltageinputs.Thetimeintervalsofsignalsusedfortraining,validation,andtestingofneuralnetworksarelistedinthistable.
Timehistoriesofthetrainingdatasets(table2),whichareproducedusingthemodi edBouc–Wenmodeldescribedbyequations(1)–(7)andtheparametersgivenintable1,areshownin gure2.Theinputandoutputdatasetsareproducedatatimeincrementof0.002sandcanbeaccessibleasvectorsx,v,Fandtheircombinations.
ModelingandcontrolofMR uiddampersusingneural
networks
Table1.ParametersforthemodelofMR uiddamperRD-1005-1(LaiandLiao2002).ParameterValueParameterValuec784Nsm 1
c0aα12441Nm 1
0b1803NsV 1m 1kαa38430NV 1m 103610Nm 1c14649Nsm 1
γb136c1a2059320m 21b34622NsV 1m 1βA58020m 2k840Nm 1n2
x10
0.0245m
η
190s 1
3.NeuralnetworkmodelingofMR uiddampers
Inthelate1980s,conclusiveproofsweregiventhatmultilayerfeedforwardneuralnetworksarecapableofapproximatinganycontinuousfunctiononacompactset.Sointhepastdecade,neuralnetworkshavenotonlybeensuccessfullyusedinsolvingcomplexproblemsinpatternrecognitionandtimeseriesprediction,butalsohavebeenproposedfortheidenti cationandcontrolofnonlineardynamicalsystems(NarendraandParthasarathy1990,YangandLee1997,ChangandRoschke1998).Theidenti cationprocedureforMR uiddamperscanbeasillustratedin gure3,inwhichtheinputu1(k)(consistingofthedisplacementandthecommandvoltage)issimultaneouslyconnectedtotheMR uiddamperandtheneuralnetworkmodeltobetrained.u2(k)isonlyconnectedtotheneuralnetworkmodel.Theinputu2(k)maybethemeasureddampingforceanditsdelays(fortheFNNmodel)orthepredicteddampingforceanditsdelays(forRNNmodel).TheoutputoftheneuralnetworkmodelF
the
(k)iscomparedwiththeoutputoftheMR uiddamperF(k)andthedifferencee(k)isusedtoadjusttheweightsandbiasesoftheneuralnetworkmodeluntila‘suf cientlysmall’conditionissatis ed.Thearchitectureoftheneuralnetworkmodeldeterminesthetrainingmethodsforandmeritsofusingneuralnetworks.
Inthefollowingtwosubsections,themodelsofMR uiddampersusingmultilayerFNNandRNNmodelswillbediscussed.
3.1.ModelingofMR uiddamperswithFNN
BecausetheFNNiscapableofapproximatinganycontinuousfunction,itcaneasilybeselectedastheidenti cationmodelforMR uiddampers.ChangandRoschke(1998)discussedthemodelingofanMR uiddamperusinganFNN.Forthepurposeofcomparisons,anFNNformodelinganMR uiddamperisalsoconsideredhere.Figure4showstheschemeoftheneuralnetwork,whichrepresentsthemappingF
(k+1)=NN[F(k),F(k 1),···,F(k IF+1),v(k),v(k 1),···,v(k Iv+1),x(k),x(k 1),···,x(k Ix+1)]
(8)
whereNN[·]denotesaneuralnetworkwithIF+Iv+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinput–outputmappingthatdescribestheMR uiddamper.Accordingtoequation(8),thedelaysofF(k),v(k),andx(k)usedasinputtotheneuralnetworkareIF 1,Iv 1,andIx 1respectively,denotedbyblocksTDL(tappeddelayline)in gure4.When
113
DHWangandWHLiao
Displacement [cm]
–Time [s]
Voltage [V]
Time [s]
Force [kN]
–Time [s]
Figure2.Thetimehistoryoftrainingdatasetsforneuralnetworkmodels:(a)displacement;(b)commandvoltage;(c)dampingforce.
Table2.Training,validation,andthetestdataset.SignalsTrainingValidationTest
DisplacementCommandvoltageForce
ab
Timeinterval(s)
00–2020–2525–30
30–3535–4040–45
45–5050–5555–60
60–6565–70
75–8070–75
80–8585–90
90–9595–100
GWN1a
GWN2b+612606sin4πt+6
Producedbymodi edBouc–Wenmodel
Gaussianwhitenoise:frequency0–3Hz,amplitude±2.5cm.Gaussianwhitenoise:frequency0–4Hz,amplitude±6V
.
Figure3.Theschemeofidenti cationfortheMR uiddamperusingtheneuralnetworkmodel.
(k)becomessuf cientlytheerrore(k)betweenF(k)andF
small,theNN[·]isconsideredtobewelltrained.
Fortheidenti cationofanMR uiddamper,afullyconnectedthree-layerfeedforwardnetworkwith18(=S1)inputlayerneurons,18(=S2)hiddenlayerneurons,and1(=S3)outputlayerneuron,asshownin gure5,hasbeenselectedtomaptheinput–outputrelationshipfortheMR uiddamper.Thetransferfunctionsoftheneuronsoftheinputlayer(layer1)andhiddenlayer(layer2)areselectedas
the114
Figure4.Theschemeofidenti cationfortheMR uiddamperusingtheFNNmodel.
hyperbolictangentsigmoidtransferfunctionwiththeform
T1(x)=T2(x)=
2
1
1+e 2x
(9)
andthetransferfunctionfortheneuronoftheoutputlayer(layer3)isselectedasthelinearfunctionwiththeform
ModelingandcontrolofMR uiddampersusingneural
networks
x e 1x(x)
12··· e 1x(x)
n e 2x(x) e e .1 2x(x) 2x(x)n ..2···... e.
Q(x) e.
...Q(x) e.
Q(x) x1
x2
···
xn
andIisanidentitymatrix.Whenthescalarµiszero,thisis
justNewton’smethod,usingtheapproximateHessianmatrix.Whenµislarge,thisbecomesgradientdescentwithasmallstepsize.Newton’smethodisfasterandmoreaccuratenearanerrorminimum,sotheaimistoshifttowardsNewton’smethodasquicklyaspossible.Thus,µisdecreasedaftereachsuccessfulstep(reductioninperformancefunction)andisincreasedonlywhenatentativestepwouldincreasetheperformancefunction.Inthisway,theperformancefunctionwillalwaysbereducedateachiterationofthealgorithm.
Thenetworkshownin gure5canbetrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthetrainingdatasetshownintable2.Theinputvectorisintheformofpq=[xqvqFq]T,inwhich
x(q) v(q)
xq=x(q 1)vq=v(q 1)
x(q 2) v(q 2)
F(q)
(15)Fq=F(q 1)
F(q 2)wherexq∈x,vq∈v,Fq∈F,andthetargetvectortq=Fq.Beforetrainingtheneuralnetwork,thetrainingdatasetshouldbepreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.
WhetherthetrainedneuralnetworkmodelcanpredicttheresponsesofMR uiddampersshouldbevalidatedthroughsimulationand/orexperiments.Inordertovalidatethenetworksproposedinthispaper,aseriesofvalidationdatasetsarede nedintable3.PredicteddampingforcesfortheMR uiddamperusingthetrainedFNNmodelandthemodi edBouc–Wenmodelwiththevalidationset1(k=2)areshownin gure6,inwhichthedampingforceversustime,thedisplacement,andthevelocityareplotted.ItisclearthatthetrainedFNNcanaccuratelypredictthedampingforceifbothinputandoutputinformationoftheMR uiddampercanbeaccessedbecausethenetworkusesthemeasureddampingforcefortrainingandvalidation.Thatistosay,monitoringoftheforceintheMR uiddamperisneededwhentheabovetrainedFNNmodelisused,whichdetersonefromusingtheFNNmodelinpracticalsituations.
3.2.ModelingofMR uiddamperswithRNN
AlthoughtheFNNmodeldiscussedintheabovesubsectioncanaccuratelypredictthedampingforceofanMR uiddamper,theinputandoutputinformationfortheMR uiddamperneedstobeassessedduringthetrainingandpredictionstagesoftheneuralnetwork,whichrestrictstheusageoftheneuralnetworkmodel.Whenusingtheneuralnetworkmodeltopredictthedampingforceonline,itisadvantageousnottomonitorthedampingforceusingsensors,whichneedtobeimplementedbyinstallingoneforcesensorinserieswitheachMR uid
115
DHWangandWH
Liao
Figure6.ThedampingforcepredictedusingtheFNNmodel.
Table3.De nitionofvalidationdatasets.
Validationset123456
ab
Displacement(cm)sin(2kπt)bsin(2kπt)bAsin(4πt)dsin(4πt)GWNeGWNe
Voltage(V)
1.5
GWNc+1.51.5
1.5+0.75sin(2kπt)b1+GWNc
1.5+0.75sin(2kπt)b
Forcea(N)Producedbymodi edBouc–Wenmodel
Timespan(s)666666
Onlyforvalidationofinversemodeling.k=0.5,1.0,1.5,···,5.0.c
Gaussianwhitenoise(frequency:0–2Hz;amplitude:±2).d
A=0.2,0.4,0.6,···,2.0.e
Gaussianwhitenoise(frequency:0–2Hz;amplitude:±2).
damper.Inthissubsection,anRNNisutilizedandtrainedtopredicttheforceoftheMR uiddamper.Inthisway,theforceintheMR uiddamperisonlyneededduringthetrainingstageoftheneuralnetworkmodel.Whenusingthetrainedneuralnetworkmodeltopredictthedampingforce,theforcesensorisnolongerneeded.
Inviewoftheabovediscussion,anRNNmodelisused,inwhichtheoutputoftheneuralnetworkmodelisdelayedandfedbacktoitsinputlayer.Figure7showstheschemeoftheRNNmodelforanMR uiddamperandthemappingoftheneuralnetworkisrepresentedas (k+1)=NN[F (k),F (k 1),···,F (k OF+1),F
v(k),v(k 1),···,v(k Iv+1),x(k),
(16)x(k 1),···,x(k Ix+1)]
whereNN[·]denotesaneuralnetworkwithIv+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinput–outputmappingthatdescribestheMR uiddamper.OFisthenumberofdelaysthattheoutputofneuralnetworkfeedsbacktotheinputlayer.
Exceptthattheoutputoftheneuralnetworkisdelayedandfedbacktotheinputlayeroftheneuralnetwork,
the116
Figure7.Theschemeofidenti cationfortheMR uiddamperusingtheRNNmodel.
architectureoftheRNN,asshownin gure8,isbasicallythesameasthatoftheFNNshownin gure5.Thetransferfunctionfortheneuronoftheoutputlayerisselectedasthelinearfunctionwiththeformgivenbyequation(10)andthe
ModelingandcontrolofMR uiddampersusingneural
networks
Figure9.ThedampingforcepredictedusingtheRNNmodel(validationdataset1,k=2).
transferfunctionsfortheneuronsoftheinputandhiddenlayersareselectedasthehyperbolictangentsigmoidtransferfunctionwiththeformgivenbyequation(9),soequation(16)canberewrittenas
(k)+b1)+b2)+b3) (k+1)=T3(W3T2(W2T1(W1P+LW1FF
(17)
123
whereW,W,andWaretheweightmatricesofthethreelayers,respectively.LW1∈ S1×OFisthelayerweightmatrix.b1,b2,andb3arethebias
(k)=matricesofthosethreelayersrespectively,andF
(k)F (k 1)F (k 2)···F (k 5)]T.[F
Theinputvectorisintheformofpq=[xqvq]T,andthetargetvectortq=Fq,inwhichxqandvqaregivenbyequation(15),andFq∈F.Beforetrainingtheneuralnetwork,thetrainingdatasetispreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.
InordertosavethememoryusedforcalculatingthefullJacobianwhentheRNNmodelistrained,theJacobian
isdividedintotwoequalsubmatrices.SoJT(X)J(X)(theapproximateHessianmatrix)inequation(14)iscalculatedusingthefollowingequation:
JTTT
(18)J(X)J(X)=[J1J2]1.
J2ThedampingforceoftheMR uiddamperpredictedusingthetrainedRNNmodelwithvalidationset1(k=2)isshownin gure9.ThedampingforceoftheMR uiddamperpredictedusingthetrainedRNNmodelwithvalidationset5(refertotable3)isshownin gure10.
ItcanbeseenthatthetrainedRNNmodelcanpredictthedampingforceoftheMR http://paringtheresultsshownin gures6and9,theFNNmodelcanpredictthedampingforcemoreaccuratelythantheRNNmodel.However,thepredictionusingtheFNNmodelneedstomonitorthedampingforceoftheMR uiddamperonlineandthenfeedbacktotheinputoftheneuralnetworkmodel.Bycontrast,
117
DHWangandWH
Liao
Figure10.ThedampingforcepredictedusingtheRNNmodel(validationdataset
5).
(a)(b)
Figure11.TheschemeoftheinversemodelingfortheMR uiddamperusingneuralnetworks:(a)forcetocommandvoltagemodel;(b)forcetodisplacementmodel.
thepredictionusingtheRNNneednotmonitorthedampingforceoftheMR uiddamper,whichmayimprovereliabilityofthesystemandreducethecostofimplementation.
TheforcepredictionofMR uiddampersusingthetrainedneuralnetworkmodelswillbeexploredinsection5.
4.InversedynamicmodelingofMR uiddampers
Inversemodelingusingneuralnetworksavoidstheneedforexplicitlyinvertingthefunctionofthesystem.BecausethedampingforceofanMR uiddamperisnonlinearlyrelatedwithdisplacementacrossthedamperandthecommandvoltage,theinversemodelingoftheMR uiddamperconsistsofthefollowingtwocases:
(i)thedampingforcetocommandvoltagewhenthepredictedoutputoftheneuralnetworkmodelu (k)=v( k)asshownin gure11(a);
(ii)thedampingforcetodisplacementwhenthepredicted
outputoftheneuralnetworkmodelu (k)=x (k)asshownin gure11(b).Inversemodelingofthedampingforcetocommandvoltageordisplacementinvolvestraininganeuralnetwork118
modelarrangedinaccordancewiththecon gurationshownin gure11,inwhichu1(k)hasthesamemeaningasde nedin gure3.WhentheinverserelationshipismodelledbytheRNN,thepredictedoutputu (k)fromtheRNNshouldbefedbacktoitsinputu2(k)(=u (k)),whichisdenotedbythedashedlinein gure11.AsforthemodelingwiththeFNN,u2(k)istheactualvaluethatneedstobepredictedbytheFNN.Byminimizingtheerrore(k)betweenthepredictedoutputu (k)oftheneuralnetworkmodelandthetargetinputu(k),theneuralnetworkmodelapproximatestheinversedynamicsoftheMR uiddamper.
Theresultsofcase(ii)canbeusedtopredictthedisplacementacrosstheMR uiddamperwhenthedampingforcecanbeaccessed,whichisnotthefocusinthispaper.Theresultsofcase(i)canbeusedtorealizecontrolofanMR uiddamper,whichwillbediscussedindetailinsection5.4.1.ModelinginversedynamicsofMR uiddamperswiththeFNN
ForinversemodelingofanMR uiddamperusingtheFNN,theneuralnetworkshownin gure12istrainedtoapproximatetheinput–outputbehavioroftheMR uiddamper.Forfurther
ModelingandcontrolofMR uiddampersusingneural
networks
hasbeenselectedtomaptheinput–outputrelationshipoftheMR uiddamper.Thetransferfunctionsfortheneuronsoftheoutputlayerareselectedasalinearfunctionwiththeformgivenbyequation(10)andthetransferfunctionsoftheneuronsoftheinputandhiddenlayersareselectedasahyperbolictangentsigmoidtransferfunctionwiththeformgivenbyequation(9),soequation(19)canberewrittenas
v( k+1)=T3(W3T2(W2T1(W1P+b1)+b2)+b3)
(20)
whereW1,W2,W3areweightmatrices;b1,b2,andb3arebiasmatricesofthreelayers,respectively;andT1andT2aregivenbyequation(12).
Thenetworkshownin gure13canbetrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthetrainingdatasetshownin gure2.Theinputvectorisintheformofpq=[xqFqvq]T,andtheoutputvectoristq=vq,inwhichxq,vq,andFqaregivenbyequation(15).Beforetrainingtheneuralnetwork,thetrainingdatasetispreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.
ThevalidationschemefortheinversemodelingusingFNNmodelsforMR uiddamperswithSIMULINKisshownin gure14.Inthis gure,SIMULINKblockslabelledasMRD1andMRD2arecreatedonthebasisofthemodi edBouc–Wenmodel,whichisusedtorepresenttheMR uiddamperinthevalidationprocess.TheblocklabelledasMRD NN INVERSErepresentsthetrainedFNNmodel,whichistobevalidated.Thedisplacement,thecommandvoltage,andthedampingforceproducedbyMRD1areinputstofeedintotheinverseFNNmodeltogeneratethecommandvoltagesignal,whichisthenfedintotheMRD2togetherwiththedisplacementtoproducethepredicteddampingforce.Thevalidationprocessincludescomparisonsbetweenthepredictedcommandvoltageandtheinputcommandvoltage,thedampingforcepredictedbyMRD2andthetargetdampingforcebyMRD1.Onlyonevalidationcaseispresentedhere,asshownin gure15.Thedisplacementandcommandvoltageinputaregivenbythevalidationset5.Observing gure15,notonlydoesthepredictedcommandvoltagecoincidewiththeinputcommandvoltage,butalsothedampingforcecalculatedusingthepredictedcommandvoltagecoincideswiththedampingforceobtainedwiththeinputcommandvoltage.
Figure14.ThevalidationschemefortheinversemodelingwiththeFNNmodelfortheMR uiddamper.
119
DHWangandWHLiao
Voltage [V]
Time [s]
Force [N]
––Time [s]
Figure15.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel:(a)thecommandvoltagepredictedusingtheFNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheFNNmodel.
AlthoughtheinverseFNNmodelshowsgoodaccuracy,theobviousdisadvantageliesintheneedforcommandvoltageinputduringprediction;thereforethemodelcanonlybeusedwhenthecommandvoltagecanbeobtainedbeforehand.4.2.ModelinginversedynamicsoftheMR uiddamperwiththeRNN
InordertorealizetheinversemodelingoftheMR uiddamper,amultilayerRNNisselected,asshownin gure16.TheselectedRNNmodelcanberepresentedasamapping:v( k+1)=NN[v( k),v( k 1),···,v( k Ov+1),
F(k),F(k 1),···,F(k IF+1),
x(k),x(k 1),···,x(k Ix+1)]
(21)
whereNN[·]denotesaneuralnetworkwithIF+Ix(=R)inputsandoneoutput,trainedtoapproximatetheinverseinput–outputmappingthatdescribestheinversedynamicbehavioroftheMR uiddamper.Ovisthenumberofdelaysintheneuralnetworkmodel.
ThearchitectureoftheRNNusedhereisbasicallythesameasthatoftheRNNmodeldiscussedinsection3exceptthattheoutputoftheneuralnetworkisthecommandvoltage,whichisdelayedandfedbacktotheinputlayeroftheneuralnetworkasshownin gure17.TheinputoftheneuralnetworkmodelisalsocomposedofthedisplacementandtheforceoutputoftheMR uiddamper.Thetransferfunctionfortheneuronoftheoutputlayerisselectedasalinearfunction,andthetransferfunctionsfortheneuronsoftheinputandhiddenlayersarehyperbolictangentsigmoidfunctionswiththeformgivenbyequation(9),soequation(21)canberewrittenas (k)+b1)+b2)+b3)
v( k+1)=T3(W3T2(W2T1(W1P+LW1v
(22)120
Figure16.TheschemeoftheRNNformodelingtheinversedynamicsoftheMR uiddamper.
whereW1,W2,andW3aretheweightmatricesofthethreelayers,respectively.LW1∈ OF×S1isthelayerweight.b1,b2,andb3arethebiasmatricesofthosethreelayersrespectively.
(k)=[v(Andv k)v( k 1)v( k 2)···v( k 5)]T.Thenetworkshownin gure17istrainedusingtheLevenberg–Marquardtalgorithmexpressedbyequation(14)withthedatasetshownin gure2,inwhichtheinputvectorisintheformpq=[xqFq]T,andtheoutputvectoristq=vq,wherexqandvqaregivenbyequation(15),andFq∈F.Beforetrainingtheneuralnetworkmodel,thetrainingdatasetshouldbealsopreprocessedbynormalizingtheinputsandtargetssothattheyhavemeansofzeroandstandarddeviationsof1.Whenthenetworkisbeingtrained,theJacobianisalsodividedintotwoequalsubmatricestosavememoryandtheapproximateHessianmatrixiscalculatedusingequation(18).
ThevalidationschemeoftheinverseRNNmodelfortheMR uiddamperwithSIMULINKisshownin gure18,which
ModelingandcontrolofMR uiddampersusingneural
networks
Figure18.ThevalidationschemefortheinversemodelingwiththeRNNmodelfortheMR uiddamper.
isquitesimilarto gure14exceptthatthecommandvoltageisnotneededtofeedtoMRD NN INVERSEblock.MRD1andMRD2areblocksbasedonthemodi edBouc–Wenmodel.TheblocklabelledasMRD NN INVERSEiscreatedonthebasisofthetrainedneuralnetworkmodel.Fromthis gure,thedisplacementaccompaniedbytheforcegeneratedbyMRD1isfedtoMRD NN INVERSEtogeneratethepredictedcommandvoltage,thenthedisplacementaccompaniedbythepredictedcommandvoltageisfedtoMRD2togeneratethedampingforce.ThedifferencebetweenthepredictedcommandvoltageandtheinputcommandvoltageaswellasthedampingforcesproducedbyMRD2andMRD1willbevalidated.
Fourvalidationcasesarediscussedinthissubsection.The rstvalidationcaseisshownin gure19.ThedisplacementisasinusoidalsignalandthecommandvoltageisaGaussianwhitenoisesignal(thevalidationdataset2,k=3,asshownintable3).From gure19(a),thepredictedcommandvoltagecantrackthetargetcommandvoltagereasonablywell.Itisinterestingtoseefrom gure19(b)thatthedampingforceproducedbythepredictedcommandvoltage(MRD2)coincideswiththedampingforceproducedbythetargetcommandvoltage(MRD1).
ThesecondvalidationcaseusestheGaussianwhitenoisedisplacementandsinusoidalvoltageinput(validationset6,k=3)(see gure20).From gure20(a),weseethatthepredictedcommandvoltagecannottrackthetargetcommandvoltageverywell;however,thedampingforceproducedbythepredictedcommandvoltagetracksthedampingforceviathetargetcommandvoltagewell(see gure20(b)).
Figure21showstheresultsforthethirdvalidationcase,forwhichthevalidationdataset1(k=3)intable3isused.From gure21(a),weseethatthepredictedcommandvoltagecannottrackaccuratelytheconstanttargetcommandvoltage(vDE=1.5V).Althoughaperiodicallyvariedcommandvoltageisproducedforthegivenconstantcommandvoltage,thedampingforcesproducedfromthepredictedcommandvoltageandtheconstantcommandvoltagecoincidewitheachother.
Thelastvalidationcaseispresentedin gure22,wherevalidationdataset5intable3isused.Validationdataset5isapartofthetrainingdataset.From gure22(a),weseethatthepredictedcommandvoltagedoesnotcompletelycoincidewiththetargetcommandvoltage,butthedampingforcesgeneratedbythepredictedcommandvoltageandthetargetcommandvoltagecompletelycoincidewitheachother(see gure22(b)).ThisisaveryimportantrequirementforusingthenetworkmodeltocontrolthedampingforceofanMR uiddamper.
Fromtheabovevalidationresults,weseethattheinversedynamicmodelingaccuracyusingtheRNNmodelisnotasgoodasthatusingtheFNNmodel.Itisfortunatethatthedampingforcegeneratedbythepredictedcommandvoltagecantrackthedampingforcegeneratedbythetargetcommandvoltagewell.ThiscansatisfytheneedsfortheinversemodelofMR uiddamperbecausetheinversemodelingnetworkismainlyusedtocontrolthedampingforceoftheMR uid
121
DHWangandWHLiao
Voltage [V]
Time [s]
Force [N]
––Time [s]
Figure19.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset2,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.
Voltage [V]
Time [s]
Force [N]
––Time [s]
Figure20.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset6,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.
damper.TrackingthedampingforceoftheMR uiddamperusingtheinversedynamicneuralnetworkmodelwillbediscussedinsection5.2.
5.Applicationsofneuralnetworkmodels
Intheabovesections,thedirectidenti cationandinversemodelingoftheMR uiddamperusingFNNandRNNmodelsareproposed.Inthissection,applicationsoftrainedneural122
networkmodelsoftheMR uiddamperforforcepredictionandgenerationproblemsarediscussed.
Inthepastdecade,manyresearchershaveexploredthefeasibilityofsemi-activevibrationcontrolofstructuresusingMR uiddampers.AlthoughMR uiddampersarehighlynonlinear,thedampingforcecanbecontrolledbywell-designedcontrolalgorithms.Atypicalsemi-activecontrolsystemschemeusinganMR uiddampertocontrolvibrationofastructureisshownin gure23.
ModelingandcontrolofMR uiddampersusingneuralnetworks
Voltage [V]
Time [s]
Force [N]
––
Time [s]
Figure21.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset1,k=3):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.
Voltage [V]
Time [s]
Force [N]
––Time [s]
Figure22.ValidationoftheinversemodelingfortheMR uiddamperusingtheneuralnetworkmodel(validationset5):(a)thecommandvoltagepredictedusingtheRNNmodel;(b)theforcepredictedfromthecommandvoltageusingtheRNNmodel.
Onekeyfeaturein gure23isthatthesemi-activecontrolsystemusingMR uiddampersconsistsofasystemcontrollerandadampercontroller.Thesystemcontrollergeneratesthedesireddampingforceaccordingtothedynamicresponsesoftheplantwhilethedampercontrolleradjuststhevoltagetotrackthedesireddampingforce.Theotherfeaturein gure23isthatthedampingforceoftheMR uiddampershouldbemonitoredand/orpredictedandfedtothedampercontrollertogeneratethecommandvoltageonthebasisofthedesired
dampingforcegeneratedbythesystemcontroller.Therefore,predictionofthedesireddampingforceandcommandvoltagegenerationaretwoimportantaspectsforapplyingMR uiddamperstophysicalstructures.
5.1.ForcepredictionfortheMR uiddamperusingneuralnetworkmodels
Itisverydif culttocontrolthedampingforceofanMR uiddamperbecauseofthesemi-activenatureandthenonlinear
123
DHWangandWHLiao
Figure23.Thesemi-activecontrolsystemwiththeMR uiddamper.
relationshipsbetweenthecommandvoltageandthedampingforce.Inordertoovercomethisdif culty,thedesireddampingforceisusuallyobtainedthroughasuitablecontrolalgorithm(systemcontroller).However,theforcegeneratedbytheMR uiddampercannotbecommandeddirectly;onlythevoltageappliedtothecurrentdriverfortheMR uiddampercanbedirectlycontrolled(Dykeetal1996),wheretheactualdampingforceoftheMR uiddamperneedstobemonitoredonlineandthecommandvoltagevariesbetweenlimitedvoltagelevels.TheforcesensorneedstobeinserieswiththeMR uiddamper,whichreducesreliabilityandincreasescost.WhentheMR uiddamperisusedtoattenuatesystemvibration,theparametersofthesystemshouldbemonitoredandfedbacktothecontroller.Ifthisinformationisusedtopredictthedampingforceusingthetrainedneuralnetworkmodel,thecostofthesystemcanbereducedandthereliabilityofthesystemcanbeimproved.NeuralnetworkmodelsfortheMR uiddamperproposedin gures4and7canbeusedtopredictthedampingforceoftheMR uiddamper.Theaccuracyofthepredictioncanbeimprovedthroughthoroughtraining.Referto gures6,9,and10forthepredictionperformanceoftheneuralnetworkmodels.
5.2.ForcecommandoftheMR uiddamperusingneuralnetworkmodels
5.2.1.TheexistingforcecontrollerwiththeHeavisidestepfunction.Thedif cultyforgeneratingthedesireddampingforceoftheMR uiddamperhasbeendiscussed.WhenthedesiredandactualdampingforcesoftheMR uiddamperareknown,Dykeetal(1996)proposedamethodthatusesaHeavisidestepfunctionasfollows:
v=VmaxH{(FDE FAC)FAC}
(23)
5.2.2.Theforcecontrollerusingneuralnetworkmodels.Inthissubsection,theneuralnetworkmodelfortheinversedynamicsoftheMR uiddamperisusedtogeneratethecommandvoltageaccordingtothedesireddampingforce.Theschemeofthesystemisillustratedin gure25,inwhichFDE(k)representsthedesiredforcethattheMR uiddampershouldgenerate,andFAC(k)representstheactualdampingforcethattheMR uiddamperactuallyproduces.Theblockdenotedas‘NeuralNetwork’representstheinverseneuralnetworkmodeloftheMR uiddamper,whichistrainedinsection4.Infact,theinverseneuralnetworkmodeloftheMR uiddamperin gure25actsasadampercontrollerasshownin gure23.IfaninverseFNNmodelisused,theactualdampingforceneedstobemonitoredbyaforcetransducerandfedbacktotheinputoftheFNNmodel,whichisshownbythedashedlinein gure25.TheSIMULINKblockdiagramusingtheinverserecurrentneuralnetworkmodelisshownin gure24(b).5.2.3.Discussionsonthedampercontrollers.Inordertovalidatethedampercontrollers,thedesireddampingforcegivenbyequation(24)isconsideredtobeproducedunderthedisplacementgivenbyequation(25):
FDE=1200(sin4πt)
π
x=sin4πt .
2
(24)(25)
whereVmaxisthevoltagetothecurrentdriverassociatedwithsaturationofthemagnetic eldintheMR uiddamper,andH(·)istheHeavisidestepfunction.FDEandFACarethedesireddampingforcegeneratedbythesystemcontrollerandtheactualdampingforceoftheMR uiddamper.
In gure24(a),thedampercontrollerusingtheHeavisidestepfunctionisshownandthevalidationresultsarediscussedinsection5.2.3.124
Thevalidationresultsforthedampercontrollersareshownin gure26.In gure26(a),thecontrolleddampingforcesobtainedusingtheinverseneuralnetworkmodelandHeavisidestepfunctionarecomparedtothedesireddampingforce.ItcanbeseenthatthedampingforcegeneratedbytheHeavisidestepfunctioncontrollercoincideswiththedesireddampingforce,whichindicatesthatthedampingforcecanbecompletelycontrollableunderthiscondition.Alsothedampingforceproducedbytheneuralnetworkcontrollercantrackthedesireddampingforceonthewhole,butthedifferencebetweenthecontrolledanddesireddampingforcesislargerthanthatwiththeHeavisidestepfunctioncontroller.
In gure26(b),thecommandvoltagesproducedbythecorrespondingdampercontrollersarealsoshown.The
ModelingandcontrolofMR uiddampersusingneuralnetworks
(a)
Figure24.TheforcecontrollerfortheMR uiddamper:(a)theschemeusingtheHeavisidestepfunction;
(b)theschemeusingtheinverseneuralnetworkmodel.
Figure25.Theschemeofthecontrollerfortrackingthedesireddampingforceviatheinversedynamicneuralnetworkmodel.
commandvoltageproducedbytheHeavisidestepfunctioncontrollerisadiscretepulsewithchangingtimewidth,whichneedsafastdynamicresponseofthecurrentdriverfortheMR uiddamper.Thecommandvoltageproducedbytheneuralnetworkmodelisacontinuouslyvaryingvoltage,whichisbene cialtothecurrentdriverfortheMR uiddamper.
6.Conclusionsandfuturework
Inthispaper,directidenti cationandinversedynamicmodelingofanMR uiddamperusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage.Theinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageonthebasisof
thedesireddampingforce.ThearchitecturesandthetrainingmethodsforthedirectandinverseneuralnetworkmodelsfortheMR uiddamperarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceofanMR uiddamper.
TheneuralnetworkmodelsdevelopedfortheMR uiddamperarevalidatedandtheirperformancesareevaluated.ValidationresultsindicatethattheproposeddirectdynamicmodelusinganRNNcanbeusedtopredictthedampingforceaccuratelyonlineandtheinversedynamicmodelusinganRNNcanbeusedtogeneratethecommandvoltagewhentheMR uiddamperisusedinthesemi-activemode,whichprovidesanewmethodforthedampercontrolleroftheMR uiddamper.Notonlyaretheresultssatisfactory,butthisapproachalsosimpli esthecontrollerarchitecture.Furthermore,theRNNmodelfortheMR uiddampergeneratesasmoothercommandvoltagethanthatwiththeHeavisidestepfunction.
TheresultspresentedinthispaperarestillpreliminaryformodelingandcontroloftheMR uiddamperusingneuralnetworks;moreresearchworkisneededinordertoimplementneuralnetworksforpracticalapplicationswithMR uiddampers.Inordertoassurestabilityofthecontrolledsystem,theon-linelearningoftheneuralnetworkandinverseneuralnetworkmodelsthatareusedtoadapttotheuniquecharacteristicsoftheMR uiddamperunderdifferentconditionsareworthfurtherinvestigation.Moreover,experimentalvalidationsusingneuralnetworkchipsshouldalsobeperformed.
125