Modeling and control of magnetorheological fluid dampers usi

时间:2025-04-02

HomeSearchCollectionsJournalsAboutContact usMy IOPscience

Modeling and control of magnetorheological fluid dampers using neural networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.2005 Smart Mater. Struct. 14 111

(http:///0964-1726/14/1/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 59.72.87.85

The article was downloaded on 09/10/2012 at 11:52

Please note that terms and conditions apply.

INSTITUTEOFPHYSICSPUBLISHINGSmartMater.Struct.14(2005)111–126

SMARTMATERIALSANDSTRUCTURES

doi:10.1088/0964-1726/14/1/011

Modelingandcontrolof

magnetorheological uiddampersusingneuralnetworks

DHWangandWHLiao1

SmartMaterialsandStructuresLaboratory,DepartmentofAutomationandComputer-AidedEngineering,TheChineseUniversityofHongKong,Shatin,NT,HongKongE-mail:whliao@cuhk.edu.hk

Received27February2003,in nalform3July2004Published7December2004

http:///SMS/14/111

Abstract

Duetotheinherentnonlinearnatureofmagnetorheological(MR) uiddampers,oneofthechallengingaspectsforutilizingthesedevicesto

achievehighsystemperformanceisthedevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheiruniquecharacteristics.Inthispaper,thedirectidenti cationandinversedynamicmodelingforMR uiddampersusingfeedforwardandrecurrentneuralnetworksarestudied.Thetraineddirectidenti cationneuralnetworkmodelcanbeusedtopredictthedampingforceoftheMR uiddamperonline,onthebasisofthedynamicresponsesacrosstheMR uiddamperandthecommandvoltage,andtheinversedynamicneuralnetworkmodelcanbeusedtogeneratethecommandvoltageaccordingtothedesireddampingforcethroughsupervisedlearning.ThearchitecturesandthelearningmethodsofthedynamicneuralnetworkmodelsandinverseneuralnetworkmodelsforMR uiddampersarepresented,andsomesimulationresultsarediscussed.Finally,thetrainedneuralnetworkmodelsareappliedtopredictandcontrolthedampingforceoftheMR uiddamper.Moreover,validationmethodsfortheneuralnetworkmodelsdevelopedareproposedandusedtoevaluatetheirperformance.Validationresultswithdifferentdatasetsindicatethattheproposeddirectidenti cationdynamicmodelusingtherecurrentneuralnetworkcanbeusedtopredictthedampingforceaccuratelyandtheinverseidenti cationdynamicmodelusingtherecurrentneuralnetworkcanactasadampercontrollertogeneratethecommandvoltagewhentheMR uiddamperisusedinasemi-activemode.

(Some guresinthisarticleareincolouronlyintheelectronicversion)

1.Introduction

1.1.MR uiddampers

Magnetorheological(MR) uidsaresuspensionsthatexhibitrapid,reversible,andtunabletransitionfromafree- owingstatetoasemi-solidstateupontheapplicationofanexternalmagnetic eld.Thesematerialsdemonstratedramaticchangesintheirrheologicalbehaviorinresponsetoamagnetic eld(CarlsonandWeiss1994).MR uidshaveattracted

1Authortowhomanycorrespondenceshouldbeaddressed.

considerableinterestrecentlybecausetheycanprovideasimpleandrapidresponseinterfacebetweenelectroniccontrolsandmechanicalsystems(Kordonsky1993a,1993b).TheMR uiddampers,whichutilizetheadvantagesofMR uids,aresemi-activecontroldevicesthatarecapableofgeneratingamagnitudeofforcesuf cientforlarge-scaleapplications,whilerequiringonlyabatteryforpower(Dykeetal1996,Spenceretal1997).Additionally,thesedevicesofferhighlyreliableoperationsandtheirperformancesarerelativelyinsensitivetotemperature uctuationsorimpuritiesinthe uid.Inrecentyears,researchintoanddevelopmentof

111

0964-1726/05/010111+16$30.00©2005IOPPublishingLtdPrintedintheUK

DHWangandWHLiao

MR uiddampersandtheirapplicationshavebeenattractivetomanyresearchers.Already,a20tonMR uiddamperprototypehasbeendevelopedandtestedinthelaboratory(Spenceretal1998)andapplicationsofMR uiddamperscanbefoundovertherangefromcivilstructuressuchasbuildingsandbridges(Dykeetal1996,Housneretal1997,Spenceretal1998)toautomobiles(Choietal2000)andrailwayvehicles(LiaoandWang2003).

DuetotheinherentnonlinearnatureofMR uiddampers,oneofthechallengingaspectsforachievingahighlevelofperformanceisdevelopmentofaccuratemodelsandcontrolalgorithmsthatcantakeadvantageoftheuniquecharacteristicsofMRdevices.

1.2.ThemodelingchallengeforMR uiddampers

Recently,bothnon-parametricandparametricmodelshavebeenproposedfordescribingthebehaviorofMR uiddampers.Parametricmodelsbasedonmechanicalidealizationshavebeenconsideredbyseveralresearchers(Spenceretal1997,Wereleyetal1998,Lietal2000).Spenceretal(1997)proposedthemodi edBouc–WenmodelfordescribingbehaviorofanMR uiddamper,inwhich14parametersneedtobedeterminedthroughcurve ttingofexperimentaldata,whichisverytime-consuming(LaiandLiao2002).Pangetal(1998)discussedfourmodelsfordescribingthebehaviorofMR uiddampers,namely:(1)theBinghamplasticmodel,(2)thebiviscousmodel,(3)thehystereticbiviscousmodel,and(4)theviscoelastic–plasticmodel;andLietal(2000)testedtheabovemodelsforthefrequencyrangeupto12Hz.TheseparametrizedmodelscanmodelthedynamicsofMR uiddamperswithinalimitedrange.

However,parametricidenti cationmethodsrequireassumptionsasregardsthestructureofthemechanicalmodelthatsimulatesbehavior.Onceamodelisselected,thevaluesofsystemparametersaredeterminedinsuchawaythattheerrorbetweentheexperimentalandthesimulatedresponsesisminimized.Theapproachcouldbedivergentifthestartingassumptionsforthestructureofthemodelare awed,orifproperconstraintsarenotappliedtotheparameters.Unrealisticparameterssuchasnegativemassorstiffnessmaybeobtained.Non-parametricmethodscouldavoidsomepitfallsoftheparametricapproachesformodeling,whicharerobustandapplicabletolinear,nonlinear,andhystereticsystems(EhrgottandMasri1992).FormodelingMR uiddampers,ChangandRoschke(1998)proposedanon-parametricmodelusingneuralnetworks,inwhichafeedforwardneuralnetwork(FNN)isused.TrainingandpredictionofthenetworkrelyoninputandoutputinformationonMR uiddampers.SchurterandRoschke(2000)investigatedthemodelingofMR uiddamperswithanadaptiveneuro-fuzzy …… 此处隐藏:35682字,全部文档内容请下载后查看。喜欢就下载吧 ……

Modeling and control of magnetorheological fluid dampers usi.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219