浙江省杭州市西湖高级中学2015届高三下学期周考数学(文)试题

发布时间:2024-11-06

西湖高中高三文科数学周考卷201500316

班级 姓名 学号 分数 。

一、选择题:

1.设集合

+1},Q={y|y=x3},则P∩Q=

A.

B.

( )

D.锐角三角形在一个平面上的平行投影不可能是钝角三角形

2y25. 已知双曲线2 2 1(a 0,b 0)的渐近线与圆C: (x

)2+y2=1相切,则双曲线的离ab

心率是 A.2

( )

B.3

( )

6. 若函数f(x)=sinωx(ω>0)在[,]上是单调函数,则ω应满足的条件是

A.0<ω≤1 B. ω≥1 C. 0<ω≤1或ω=3 D. 0<ω≤3

7. 已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ( )

A.-1

B.1

C.0

D.20152

8. 长方体ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小为,若空间有一条直线l与

直线CC1所成的角为,则直线l与平面A1BD所成角的取值范围是

( )

A.[,]

1212

B. [,]

122

C. [,]

1212

D. [0,]

2

二、填空题:

()x,x 0

9. 设函数f(x)= ,则f(-2)=

log2x,x 0

若f(a)=1,则实数a= .

10. 已知等比数列{an}的前n项和为Sn=3n-a,则实数a= ,

公比q= .

11. 某几何体的三视图(单位:cm)如图所示,其中俯视图中的

曲线是四分之一的圆弧,则该几何体的体积等于 cm3,

表面积等于 cm2.

(第11题图)

2y2 1的左右焦点,过右焦点F2的直线l: y=kx+m与椭圆C 12. 已知F1,F2是椭圆C: 相交于A,B两点,M是弦AB的中点,直线 OM(O为原点)的斜率为,则△ABF1

的周长等于 ,斜率k= .

13. 已知a,b∈R,若a2+b2-ab=2,则ab的最小值是

y 1

14. 若直线l: ax-by=1与不等式组 3x y 2 0表示的平面区域无公共点,则3a-2b的

3x y 2 0

最小值与最大值的和等于 .

15. 已知△ABC,AB=7,AC=8,BC=9,P为平面ABC内一点,满足PA PC 7,则|PB|

的取值范围是 .

三、解答题: 16.(15分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a-b=2,c=4,sinA=2sinB. (Ⅰ) 求△ABC的面积; (Ⅱ) 求sin(A-B).

17.(15分)已知数列{an}的前n项和Sn,且满足:n∈N*.

(Ⅰ) 求an; (Ⅱ) 求证:

n,

123n12n

18.(分15分)如图,在四面休ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2, (Ⅰ) 求证:AC⊥BD; (Ⅱ)若平面ABD⊥平面CBD,且BD=,求二面角C-AD-B的余弦值。

(第18题图)

19. (15分)已知抛物线C: y2=4x的焦点为F,点P(4,0). (Ⅰ)设Q是抛物线C上的动点,求|PQ|的最小值; (Ⅱ)过点P的直线l与抛物线C交于M、N两点,若△FMN的面积为

求直线l的方程。

20.(14分)已知函数f(x)=明;

(II)若函数g(x)=f(x)-2|x|-m有四个不同的零点,求实数m的取值范围.

x (I)判断函数f(x)在(-2,-1)上的单调性并加以证

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一

二、填空题:本大题共7小题,前4题每题6分,后3题每题4分,共36分.

9.4,2或0 10.1, 3 11.3 , 6 12 12. 8, 3

13.

2

14. 2 15.[4,10] 3

三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤. 16.(本题满分15分)

ab(I)解:由sinA=2sin

B及正弦定理得

=

sinAsinB

a=2b …… ……

……2分 又 a-b=2所以a=4,b=2

…… … ……3分

又 c=4所以DABC是等腰三角形

取底边AC的中点D,连BD,则高BD5分

所以

D

ABC的面积S (II)在RtD

ABD中,sinA=

1

AC BD ………7分 2

A

2

1A= 4

B1B sin2=4,cos2= …… …… ……10分

BB1sinB=2sin

?cos2224 cosB=cos2

BB217-sin2?-()2=………… ……12分 2248

sin(A B) sinA cosB cosA sinB …… …… ……13分

71 …… …… ……15分

8417.(本题满分15分)

(I)解:当n 1时,

1

1,即a1 2……………1分 a1 1

12n

L n……………① a1 1a2 1an 1

当n 2时, 12n 1

L n 1……………② ……………3

分 a1 1a2 1an 1 1由① ②得

n

1,即an n 1 (n 2)……………5分 an 1

……………………………………6分 an n 1 (n N*)

a 而没证明扣 (忘了求a1 2扣1分,猜想3分) n

(II)(方法一)证明:Qan an 1 1,所以数列 an 是等差数列。……7分

(a a)n(n 3)n

……………8分 Sn 1n

22

12211

……………10分 ( )

Snn(n 3)3nn 3

1111

S1S2Sn 1Sn

211111111

……………12分 [( )( ) ( ) ()]

3142536nn 3 211111

……………13分 [(1 ) ( )]

323n 1n 2n 3 211113

……………15分 (1 )

32392

(方法三)证明:Qan an 1 1,所以数列 an 是等差数列。 ………7分

(a a)n(n 3)n

……………8分 Sn 1n

22

12211

……………10分

Snn(n 3)n(n 2)nn 2

1111 S1S2Sn 1Sn

11111111

12分 () ) ( ……………)

1324n 1n 1nn 2 11111111

…………13分 ( ) ( )

123n34n 1n 2

1111

……………14分 ( ) ( )

12n 1n 2

3

……………15分

2

18.(本题满分15分) (I)证明(方法一):∵ ABD CBD,AB BC,BD BD. ∴ ABD CBD. ∴AD CD.………………2分 取AC的中点E,连结BE,DE,则BE AC,DE AC.

………………………………………………………………3分

又∵BE DE E, ……………………………………4分 BE 平面BED,BD 平面BED,

∴AC 平面BED, ……………………………………5分

∴AC BD ………………………………………………6分

(方法二):过C作CH⊥BD于点H.连接AH.…1分 ∵ ABD CBD,AB BC,BD BD. ∴ ABD CBD.∴ AH⊥BD.…………………3分 又∵AH CH H,……………………………………4分

AH 平面ACH,CH 平面ACH,

∴BD⊥平面ACH.……………………………………5分 又∵AC 平面ACH,

∴AC BD.……………………………………………6分 (方法三): ( ) ………………2分

BC BD BA BD ………………………………3分

CBD ABD………4分

2BDcos60 2BDcos60 0,……………………5分 ∴AC BD.……………………………………………6分

(II)解:

过C作CH⊥BD于点H.则CH 平面BCD,

又∵平面ABD⊥平面BCD,平面ABD 平面BCD=BD, ∴CH⊥平面ABD. ……………………………………8分 过H做HK⊥AD于点K,连接CK. ………………9分 ∵CH⊥平面ABD,∴CH⊥AD,又HK CH H, ∴AD⊥平面CHK,∴CK⊥AD.…………………10分 ∴ CKH为二面角C AD B的平面角. …………11分 连接AH.∵ ABD CBD,∴ AH⊥BD.

∵ ABD CBD 60,AB BC 2,

53

,∴DH . ………12分

22

AH DH∴AD

∴HK .…………………………13分

ADCH21

∴tan CKH ,…………………………………………14分

HK3∴cos CKH .

10

∴二面角C AD

B

∴AH CH

,BH 1.∵BD

19. (本题满分15分) (I)解:设Q(x,y),则

| |PQ

…………… 当x 2时,|PQ|min ……………(II)解:设直线l:x=my+4,M(x1,y1),N(x2焦点F(1,0)

ìx=my+4ï由ï消去x得y2-4my-16=í2

ïïîy=4xìïy1+y2=4m

由韦达定理可得ï…………………………11分í ïyy=-16ïî12所以DFMN的面积

SDFMN=

=

1

|PF|?|y12

y2|=

1鬃32

………………13分

3

2

m 1 ……… ……………14分

所以直线l的方程为:x y 4 0 …………………………15分

(方法二)解:若直线l的斜率不存在,则l:x=4,M(4,4),N(4,-4)

所以DFMN的面积

SDFMN=

11|CF|?8=鬃38=12? …………………9分 22

所以直线l的斜率必存在

设直线l:y=k(x-4),(k?0),M(x1,y1),N(x2,y2),焦点F(1,0)

ìy=k(x-4)ï由ï消去y得k2x2-4(2k2+1)x+16k2=0………10分 í2

ïïîy=4xìï4(2k2+1)ïïx+x2=

由韦达定理可得í1…………………11分

k2

ïïïïîx1x2=16

弦长|MN|=

=

=

…………………12分

F到l

的距离d

所以DFMN的面积

…………………13分

SDFMN

1

=

|MN|?d=2

………………………14分

所以直线l的方程为:x y 4 0 …………………………15分

20.(本题满分14分)

ì1ïï+x, x>-2ïïx+2ï(I)解:函数f(x)=í…………………………1分

ï1ï -+x,x<-2,ïïx+2ïî

k 1

函数f(x)在在( 2, 1)上递减,………………………………2分

证明如下:

设x1,x2 ( 2, 1),且x1 x2,则

f(x1) f(x2) (

11

) (x1 x2) x1 2x2 2

(x1 x2)[1

1

] ……………4分

(x1 2)(x2 2)

Q 2 x1 x2 1, x1 x2 0,0 (x1 2)(x2 2) 1 1

1

0

(x1 2)(x2 2)

f(x1) f(x2) 0即f(x1) f(x2)

所以函数f(x)在( 2, 1)上递减. ……………………6分

(II)解法一:

函数g(x)=f(x)-2x-m有四个零点

1

+x图像与函数y=2x+m图像有四个交点 ……7分 Û函数f(x)=

|x+2|

结合图像

(1) 当x 2 时, 函数f(x)=-

1

+x图像与函数y=2x+m图像恰有一个交点,……9分 x+2

(2)当x 2 时,为满足g(x)有4

图像与函数y=2x+m而f(x)=

11

+x(x>-2)过点(0,), x+22

结合图像知则m

1

…………………………10分 2

1

+x(x>-2) x+2

当直线y=-2x+m与y=

相切时,在( 2, )内只有两个交点。

ì1ïïy=+x 1ï消去得+3x-m=0 yx+2í ïx+2ïïîy=-2x+m

3x2+(6-m)x+1-2m=0 \D=(6-m)2创3(1-2m)=0 解得m=-6-,m=-6+

1

\当m?(6+)时,函数g(x)有4个零点……………….…14分

2解法二:

函数g(x)=f(x)-2x-m有四个零点

1

+x-2|x|-m=0有四个实根 Û方程

|x+2|

Û函数h(x)=

1

图像与函数y=2x-x+m图像有四个交点 |x+2|

Û函数

h(x) (1)当x 0 若函数h(x)=

个交点,则(2) 当x 0 与函数y像恰好有则m

1

2

当直线y=-3在( ,0)内只有两个交点。

ì1ïïy= (x>-2) 1ï消去得=-3x+m 整理得3x2+(6-m)x+1-2m=0 yx+2í ïx+2ïïîy=-3x+m

\D=(6-m)2-4创3(1-2m)=0 解得m=-6-,m=-6+ …………………13分

1

\当m?(6+)时,函数g(x)有4个零点……………….…14分

2

解法三:

函数g(x)有4个不同零点,即方程方程化为:①

1

+x 2|x| m 0有4个不同的实根. x 2

x 0

2

x (m 2)x (2m 1) 0

x 2 2 <x 0 与② 2与③ ……7分 2

3x (6 m)x (2m 1) 03x (6 m)x (2m 1) 0

记v(x) x2 (m 2)x (2m 1),u(x) 3x2 (6 m)x (2m 1), w(x) 3x2 (6 m)x (2m 1)u(x),v(x),w(x)开口均向上. 对①:由v( 2) 1 0知v(x)在[0, )最多一个零点.

1

当v(0) 2m 1 0,即m 时,v(x)在[0, )上有一个零点

21

当v(0) 2m 1 0,即m 时,v(x)在[0, )没有零点。 ………………9分

2

对②:由u( 2) 1 0知u(x)在( , 2)有唯一零点.…………………10分 对③:为满足g(x)有4个零点,w(x)在( 2,0)应有两个不同零点.

w(0) 1 2m 0

w( 2) 1 0 2

(6 m) 12(1 2m) 0 6 m 2 0

6

6 m

1

.…………………13分

2

浙江省杭州市西湖高级中学2015届高三下学期周考数学(文)试题.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219