求函数解析式的方法
发布时间:2024-11-04
发布时间:2024-11-04
函数解析式常用方法的方法
求函数解析式的方法
(一)待定系数法
待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1:已知f(x)是二次函数,若f(0) 0,且f(x 1) f(x) x 1试求f(x)的表达式。
解析:设f(x) ax2 bx c (a 0)
由f(0) 0,得c=0
由f(x 1) f(x) x 1 得
a(x 1)2 b(x 1) c ax2 bx c x 1
整理得
ax2 (2a b)x a b c ax2 (b c)x c 1
1 a 2 2a b b 1 1 a b c c 1 b 2 得 c 0 c 0
11 f(x) x2 x22
小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=
二次函数时,根据条件可设 k (k≠0);f(x)为x
函数解析式常用方法的方法
①一般式:f(x)=ax2+bx+c(a≠0)
②顶点式:f(x)=a(x-h)2+k(a≠0)
③双根式:f(x)=a(x-x1)(x-x2)(a≠0)
(二)换元法
换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
例2
:已知f1) x 1,求f(x)的解析式。
解析:
1视为t,那左边就是一个关于t的函数f(t),
1 t中,用t表示x,将右边化为t的表达式,问题即可解决。
1 t
x 0
t 1
f(t) (t 1) 2(t 1) 1 t
f(x) x2(x 1)
小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。
注意:换元后要确定新元t的取值范围。
②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 22
函数解析式常用方法的方法
(三)配凑法
已知复合函数f[g(x)]的表达式,要求f(x)的解析式时,若f[g(x)]表达式右边易配成g(x)的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。
例3
:已知f1) x 求f(x)的解析式。 分析:x
可用配凑法
解:由f1) x )2 1
令t x 0 t 1
则f(t) t2 1
即f(x) x2 1(x 1)
当然,上例也可直接使用换元法
令t
则t1
得 22 f(t) (t 1) 2(t 1) t 1
即 f(x) x2 1(x 1)
由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。 11例4:已知f(x ) x2 2,求f(x). xx
分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。 x (t 1)2
函数解析式常用方法的方法
111解析:由f(x ) x2 2 (x )2 2 xxx
1 令t x x2 tx 1 0 x
由 0即t2 4 0得t R
f(t) 2t 2
即:f(x) x2 2(x R)
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的内函数来表示出来,在通过整体换元。和换元法一样,最后结果要注明定义域。
(四)消元法,此方法的实质是解函数方程组。
消元法适用的范围是:题高条件中,有若干复合函数与原函数f(x)混合运算,则要充分利用变量代换,然后联立方程组消去其余部分。
1例5:设f(x)满足f(x) 2f() x,求f(x)的解析式。 x
1分析:要求f(x)可消去f(),为此,可根据题中的条件再找一x
1个关于f(x)与f()的等式,通过解方程组达到消元的目的。
x
1解析:f(x) 2f() x………………………① x
1 显然,x 0,将x换成得 x
11 f() 2f(x) ……………………………..② xx
1 f(x) 2f() x x由 11 f() 2f(x) x x
1消去f(),得 x
函数解析式常用方法的方法
12f(x) x 33x
小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、f();互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。 1x
(五)赋值法
赋值法是依据题条件的结构特点,由特殊到一般寻找普遍规律的方法。
其方法:将适当变量取特殊值,使问题具体化、简单化,依据结构特点,从而找出一般规律,求出解析式。
例5:已知f(0) 1,f(a b) f(a) b(2a b 1),求f(x)。 解析:令a 0,
则f( b) f(0) b(1 b) b2 b 1
令 b x
则f(x) x2 x 1
小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。
总之,求函数解析式的常用方法有:配凑法、换元法、待定系数法、消元法等。如果已知函数解析式的类型,可用待定系数法;已知复合函数解析式时,可用换元法,这时要注意“元”的取值范围;当已知的表达式比较简单时,可用配凑法;若已知抽象的函数表达式,根据题目的条件特征,可用赋值法或解方程组消元的方法求解析式
上一篇:保险代理从业人员资格考试大纲
下一篇:用“许三多精神”做保险