Thermo Field Dynamics and quantum algebras(9)
时间:2025-04-20
时间:2025-04-20
The algebraic structure of Thermo Field Dynamics lies in the $q$-deformation of the algebra of creation and annihilation operators. Doubling of the degrees of freedom, tilde-conjugation rules, and Bogoliubov transformation for bosons and fermions are recog
[a(θ),a (θ)] σ=1,[ a(θ),a (θ)] σ=1.(32)
Allotherσ-commutatorsareequaltozeroanda(θ)anda (θ)σ-commuteamongthemselves.Eqs.(31)arenothingbuttheBogoliubovtransformationsforthe(a,a )pairintoanewsetofcreation,annihilationoperators.Inotherwords,eqs.(31),(32)showthattheBogoliubov-transformedoperatorsa(θ)anda (θ)arelinearcombina-tionsofthecoproductoperatorsde nedintermsofthedeformationparameterq(θ)andoftheirθ-derivatives;namelytheBogoliubovtransformationisimplementedindi erentialform(inθ)as
a(θ)=1
δθ aq+aq 1
(aq aq 1)
=1 √
1δ α(1+σ√δθ)
2e aq+aq 1 (aq aq 1 ) (33)
a (θ)=1
√δθ aq+aq 1+σ(aq aq 1 )
1
=α(1 1δ
σ√δθ)
2e aq+aq 1+σ(aq aq 1 ) (34)
whereα=1
σ(=i)changes
signundertilde-conjugation.Thisisrelatedtotheantilinearitypropertyoftilde-conjugation,whichweshalldiscussinmoredetailbelow.
Next,weobservethattheθ-derivative,namelythederivativewithrespecttotheq-deformationparameter,canberepresentedintermsofcommutatorsofa(θ)(orofa (θ))withthegeneratorGoftheBogoliubovtransformation(31).
From(31)weseethatGisgivenby
G≡ i√
上一篇:中国百货业自营模式的探索
下一篇:西方文化视野与文本解读