必修3教案2.2.1用样本的频率分布估计总体分布((2)

时间:2026-01-19

必修3教案2.2.1用样本的频率分布估计总体分布(2课时)

频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:

(1) 计算一组数据中最大值与最小值的差,即求极差 (2) 决定组距与组数 (3) 将数据分组 (4) 列频率分布表 (5) 画频率分布直方图

以课本P56制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。(让学生自己动手作图)

频率分布直方图的特征:

(1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。

(2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据

信息就被抹掉了。

〖探究〗:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形

状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图不同的看法进行交流……)

接下来请同学们思考下面这个问题: 〖思考〗:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分

布直方图2.2-1,(见课本P57)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)

〈二〉频率分布折线图、总体密度曲线 1.频率分布折线图的定义:

连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。

2.总体密度曲线的定义:

在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本P60) 〖思考〗:

1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?

2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?

实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确. 〈三〉茎叶图

1.茎叶图的概念:

当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本P61例子) 2.茎叶图的特征:

(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可

以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。

(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据

虽然能够记录,但是没有表示两个记录那么直观,清晰。

【例题精析】

必修3教案2.2.1用样本的频率分布估计总体分布((2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:4.9 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:19元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219