ocal Hurst exponent of the financial time series in the vici
时间:2026-01-15
时间:2026-01-15
介绍一种策略
PhysicaA387(2008)
4299–4308
http:///locate/physa
ThelocalHurstexponentofthe nancialtimeseriesinthevicinity
ofcrashesonthePolishstockexchangemarket
DariuszGrech ,GrzegorzPamu a
InstituteofTheoreticalPhysics,UniversityofWroc aw,PL-50-204Wroc aw,Poland
Received13November2007;receivedinrevisedform19January2008
Availableonline12February2008
Abstract
Weinvestigatethelocalfractalpropertiesofthe nancialtimeseriesbasedonthewholehistoryevolution(1991–2007)oftheWarsawStockExchangeIndex(WIG),connectedwiththelargestdeveloping nancialmarketinEurope.Calculatingtheso-calledlocaltime-dependentHurstexponentHlocfortheWIGtimeserieswe ndthedependencebetweenthebehaviorofthelocalfractalpropertiesoftheWIGtimeseriesandthecrashes’appearanceonthe nancialmarket.WeformulatethenecessaryconditionsbasedontheHlocbehaviorwhichhavetobesatis ediftheruptureorcrashpointisexpectedsoon.AsaresultweshowthatthesignaltosellorthesignaltobuyonthestockexchangemarketcanbetranslatedintoHlocevolutionpattern.Wealso ndarelationbetweentherateoftheHlocdropandthetotalcorrectiontheWIGindexgainsafterthecrash.Thecurrentsituationonthemarket,particularlyrelatedtotherecentFedinterventioninSeptember’07,isalsodiscussed.
c2008ElsevierB.V.Allrightsreserved.
PACS:89.65.Gh;05.40.Jc;05.45.Vx
Keywords:Econophysics;Timeseries;Scalinglaws;Powerlaws;Hurstexponent;Financialcrashes;Fractals
Themodelsandmechanismsenablingtopredictthefuturebehaviorof nancialmarketsonalong-orshort-termperiodareabigchallengein nancialengineeringandveryrecentlyalsoineconophysics.Inthelattercaseonebelievesthattheapproachbasedontheanalogyofthe nancialmarketwithcomplexdynamicalsystemscouldbeveryfruitful[1–8].Inparticular,thescaleinvarianceofthecomplexsystemsisusedtorevealthelog-periodicoscillationscharacteristicforthesesystemsbeforetheso-calledphasetransitionpointisreached.Thelog-periodicoscillationsprecedingthecrashesorrupturepoints,i.e.themomentswhentheincreasinglong-termtrendisbeingbrokenandstartstoreverse,havereallybeenobservedformainmarketindicesorshareprices(seee.g.Refs.[1,2,9–13]).Anumberofcrashmomentstchavebeenpredictedintheliteraturesofar,someofthembeinginverygoodagreementwiththeactualmomentthecrashtrulytookplace[11–13].
Howeveronehastorememberthatany nancialsystemshouldbeconsideredasanopensystem,whilethescalelessbehaviorandthequantitativedescriptionfollowingfromthisassumptionareabsolutelytrueonlyinthecaseofclosedstatisticalsystems.Thereforeoneshouldbeawarethatthemethodsbasedontheclosedsystemassumptionarevery Correspondingauthor.
E-mailaddress:dgrech@ift.uni.wroc.pl(D.Grech).
c2008ElsevierB.V.Allrightsreserved.0378-4371/$-seefrontmatter
doi:10.1016/j.physa.2008.02.007
介绍一种策略
4300D.Grech,G.Pamu a/PhysicaA387(2008)4299–4308
sensitivetothenumberofdatapoints(information)onetakesintoaccounttomakea twithlog-periodicoscillationparameters.Asaresultthepredictivepowerofsuchmodelscanbeingeneralverylimited[14].
Fewyearsagoanotherapproachbasedonthelocalpropertiesofthetimeserieswasproposed[15].ThemethodusesthelocalHurstexponentHloc[16,17]orthelocalfractaldimensionDlocofthetimeseriesbuiltontheindexvaluesorshareprices.Thesequantitiesarelinkedtogetherbythewell-knownrelation
Dloc=2 Hloc(1)inananalogywiththesimilarequationsatis edfortheglobalDandHvaluesusuallyusedtodescribethemonofractalsignals.
InRef.[15]itwasshownthatthelocalHurstexponentcalculatedfortheDowJones(DJIA)indexformsacharacteristicpatternbeforeanyrecordedcrashontheAmericanstockmarket.TheHlocvaluesdropsigni cantlydownbeforeanyrupturepoint.Themovingaverage Hloc(t) 5ofthelocalHurstexponentcalculatedontheoneweekperiod(5sessions)dropsdownto0.45orevenlessforsessionsimmediatelyprecedingtherupturepoint,thusrevealingthepresenceofthegrowingantipersistenceinthe nancialtimeseriessignalbeforethecrashoccurs.ThesimilarqualitativebehaviorofthelocalHvaluesforother nancialtimeseries(shares)hasalsobeencon rmed[18].
TheadvantageintheuseofHlocoverothermethodsisthatitactuallymeasuresthetemporal uctuationsofthemarketandthereforeitseemstobemoreresistanttothelong-terminaccuraciesordistortionscominge.g.fromtherapidchangeoftheboundaryconditionsaroundthe nancialsystem.ThereforetheHlocmethodmightbealsoappliedtoanopencomplexsystem—the nancialmarketbeingagoodcandidateofsuchsystem.
InthisreportweintendtoapplythetechniqueusedinRef.[15]toinvestigatethemarketindexofthelargestemergingmarketinEurope—theWarsawStockExchangeIndex(WIG)incorporatingmorethan200companies.Ithasalreadya16-yearsoldhistoryuptonowwithalmost3700closuredayvalues.
TheWIGtimeserieshasbeenanalyzedbyuswiththeDetrendedFluctuationAnalysis(DFA)technique[16]toextractthescalingHurstexponentH.Thistechniquewasverywelldescribedintheliteraturesofar[16,17,19]includingthedetaileddiscussionofvariouseffectsonDFAresultsliketrends[20],nonstationarities[21]ornonlinear lters[22].Letusremindhoweverthelessknown‘local’versionofDFAfullyrevealedinRef.[15]andappliedinourcalculationsbelow.
We rstformforagiventradingdayt=iatimesubseriesoflengthNwithpointsintheperiod i N+1,i .Wecallthissubseriestheobservationboxortheobservationtime-window.ThenthestandardDFAprocedureisappliedtothistime-window,i.e.wecoverthesubserieswithsmallernon-overlappingboxesofsizeτstartingfromthegiventradingpointt=iandgoingbackwardsintimeuptot=i N+1.Inordertocoverthewholetime-windowwithτ-sizeboxesweputthedata i N+1,i [N/τ]τ+1 ,where[.]meanstheintegerpart,intothelastbox.Thisboxpartlyoverlapstheprecedingonebutthisdoesnotmodifytheobtainedresults.IneachboxthedetrendedsignalisfoundaccordingtoDFAmethodforthesimplestlineartrendassumedineveryboxofsizeτ.Thedetrendedsignal uctuatesanditsvariance F2(τ) isrelatedtotheboxwidthτbythepower-lawrelationknownforDFA:
F2(τ) ~τ2Hloc.(2)ThusmovingtheobservationboxoflengthNsession-after-sessionweareabletoobservethewholehistoryofHloc(t)changesintime.
下一篇:公司生产统计报表(范本)