高三理数一轮复习:第十二章 排列组合、二项式定理、概率

时间:2026-01-15

高三理数一轮复习:第十二章 排列组合、二项式定理、概率

第十二章 排列组合、二项式定理、概率

高考导航

高三理数一轮复习:第十二章 排列组合、二项式定理、概率

知识网络

12.1 分类加法计数原理与分步乘法计数原理

典例精析

题型一 分类加法计数原理的应用

【例1】 在1到20这20个整数中,任取两个数相加,使其和大于20,共有 种取法. 【解析】当一个加数是1时,另一个加数只能是20,有1种取法; 当一个加数是2时,另一个加数可以是19,20,有2种取法; 当一个加数是3时,另一个加数可以是18,19,20,有3种取法;

当一个加数是10时,另一个加数可以是11,12, ,19,20,有10种取法; 当一个加数是11时,另一个加数可以是12,13, ,19,20,有9种取法;

当一个加数是19时,另一个加数只能是20,有1种取法.

由分类加法计数原理可得共有1+2+3+ +10+9+8+ +1=100种取法.

高三理数一轮复习:第十二章 排列组合、二项式定理、概率

【点拨】采用列举法分类,先确定一个加数,再利用“和大于20”确定另一个加数.

【变式训练1】(2010济南市模拟)从集合{1,2,3, ,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )

A.3

B.4

C.6

D.8

【解析】当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为3112

4,6,9.同理,公比为、时,也有4个.故选D. 2233

题型二 分步乘法计数原理的应用

【例2】 从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有 种.

【解析】能去张家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.则由分步乘法计数原理得不同的选择方案有4×5×4×3=240种.

【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏.

【变式训练2】(2010湘潭市调研)要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有 种不同的排法.

【解析】依题意,值班表须一天一天分步完成.第一天有5人可选有5种方法,第二天不能用第一天的人有4种方法,同理第三天、第四天、第五天也都有4种方法,由分步乘法计数原理共有5×4×4×4×4=1 280种方法.

题型三 分类和分步计数原理综合应用

【例3】(2011长郡中学)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有 .

【解析】方法一:由题意知,有且仅有两个区域涂相同的颜色,分为4类:1与5

4同;2与5同;3与5同;1与3同.对于每一类有A44种涂法,共有4A4=96种方法.

方法二:第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.

【点拨】染色问题是排列组合中的一类难题.本题能运用两个基本原理求解,要注意的是分类中有分步,分步后有分类.

【变式训练3】(2009深圳市调研)用红、黄、蓝三种颜色去涂图中标号为1,2, ,9的9个小正方形,使得任意相邻(有公共边)小正方形所涂颜色都不相同,且1,5,9号小正方形涂相同颜色,则符合条件的所有涂法有多少种?

【解析】第一步,从三种颜色中选一种颜色涂1,5,9号有C13种涂法;

高三理数一轮复习:第十二章 排列组合、二项式定理、概率

第二步,涂2,3,6号,若2,6同色,有4种涂法,若2,6不同色,有2种涂法,故共有6种涂法; 第三步,涂4,7,8号,同第二步,共有6种涂法. 由分步乘法原理知共有3×6×6=108种涂法.

总结提高

分类加法计数原理和分步乘法计数原理回答的都是完成一件事有多少种不同方法或种数的问题,其区别在于:分类加法计数原理是完成一件事要分若干类,类与类之间要互斥,用任何一类中的任何一种方法都可以独立完成这件事;分步乘法计数原理是完成一件事要分若干步,步骤之间相互独立,各个步骤相互依存,缺少其中任何一步都不能完成这件事,只有当各个步骤都完成之后,才能完成该事件.因此,分清完成一件事的方法是分类还是分步,是正确使用这两个基本计数原理的基础.

12.2 排列与组合

典例精析

题型一 排列数与组合数的计算

6

8!+A6333

【例1】 计算:(2) C3+C4+ +C10. A8-A10

8×7×6×5×4×3×2×1+6×5×4×3×2×157×6×5×4×3×25 130【解析】(1)原式==-.

6238×7-10×9×8×756×(-89)

33343343 …… 此处隐藏:12063字,全部文档内容请下载后查看。喜欢就下载吧 ……

高三理数一轮复习:第十二章 排列组合、二项式定理、概率.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:4.9 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:19元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219