第4章根轨迹分析法习题解答
时间:2026-01-16
时间:2026-01-16
第四章 根轨迹分析法
4.1 学习要点
1根轨迹的概念;
2 根轨迹方程及幅值条件与相角条件的应用; 3根轨迹绘制法则与步骤;
4 应用根轨迹分析参数变化对系统性能的影响。
4.2 思考与习题祥解
题4.1 思考与总结下述问题。
(1)根轨迹的概念、根轨迹分析的意义与作用。
(2)在绘制根轨迹时,如何运用幅值条件与相角条件? (3)归纳常规根轨迹与广义根轨迹的区别与应用条件。
(4)总结增加开环零、极点对系统根轨迹的影响,归纳系统需要增加开环零、极点的情况。 答:(1)当系统某一参数发生变化时,闭环特征方程式的特征根在S复平面移动形成的轨线称为根轨迹。根轨迹反映系统闭环特征根随参数变化的走向与分布。
根轨迹法研究当系统的某一参数发生变化时,如何根据系统已知的开环传递函数的零极点,来确定系统的闭环特征根的移动轨迹。因此, 对于高阶系统,不必求解微分方程,通过根轨迹便可以直观地分析系统参数对系统动态性能的影响。
应用根轨迹可以直观地分析参数变化对系统动态性能的影响,以及要满足系统动态要求,应如何配置系统的开环零极点,获得期望的根轨迹走向与分布。
(2)根轨迹上的点是闭环特征方程式的根。根轨迹方程可由闭环特征方程式得到,且为复数方程。可以分解为幅值条件与相角条件。运用相角条件可以确定S复平面上的点是否在根轨迹上;运用幅值条件可以确定根轨迹上的点对应的参数值。
(3)归纳常规根轨迹与广义根轨迹的区别与应用条件。
考察开环放大系数或根轨迹增益变化时得到的闭环特征根移动轨迹称为常规根轨迹。除开环放大系数或根轨迹增益变化之外的根轨迹称为广义根轨迹,如系统的参数根轨迹、正反馈系统根轨迹和滞后系统根轨迹等。
绘制参数根轨迹须通过闭环特征方程式等效变换,将要考察的参数变换到开环传递函数中开环放大系数或根轨迹增益的位置上,才可应用根轨迹绘制规则绘制参数变化时的根轨迹图。
正反馈系统的闭环特征方程1 G(s)H(s) 0与负反馈系统的闭环特征方程1 G(s)H(s) 0存在一个符号差别。因此,正反馈系统的幅值条件与负反馈系统的幅值条件一致,而正反馈系统的相角条件与负反馈系统的相角条件反向。负反馈系统的相角条件( 2k )是180 根轨迹,正反馈系统的相角条件(0 2k )是0 根轨迹。因此,绘制正反馈系统的根轨迹时,凡是与相角有关的绘制法则, 如实轴上的根轨迹,根轨迹渐近线与实轴的夹角, 根轨迹出射角和入射角等等,都要变 2k 角度为0 2k 。
(4)由于开环零、极点的分布直接影响闭环根轨迹的形状和走向,所以增
加开环零、极点将使根轨迹的形状和走向发生改变,从而使系统性能也随之发生变化。
一般地,增加合适的开环零点,可使闭环系统的根轨迹产生向左变化的趋势,从而改善系统的稳定性和快速性。增加开环极点时,增加了根轨迹的条数,改变了根轨迹渐近线的方向,可使闭环系统的根轨迹产生向右变化的趋势,削弱系统的稳定性和快速性。
增加开环零极点,都将改变根轨迹渐近线与实轴的交点与夹角,可能改变根轨迹在实轴上的分布。
如果系统期望主导极点在根轨迹左侧时,可通过增加开环零点(超前校正),使闭环系统的根轨迹向左弯曲,通过期望主导极点,满足系统动态要求;如果系统期望主导极点在根轨迹右侧时,可通过增加开环极点(滞后校正),使闭环系统的根轨迹向右弯曲,通过期望主导极点,满足系统动态要求。
题4.2
,试绘制各系统的根轨迹图。
(1(2)G(s)H(s) (3)G
(s)H(s)
解: (1K(s 2)(s 4)K(s 2)
32
n 3。
1)起点:三个开环极点 p1 0, p2 2, p3 4,2)终点:无有限开环零点 m 0。 3)实轴上 ( , 4]、[ 2,0] 为根轨迹区间。 4)根轨迹渐近线
A
2 43 0
2
180(2k 1)
60,180
3 0
5) 求分离点
A(s)B(s) B(s)A(s) 0
2
3s 12s 8 0 得:
'
'
s2 2
23
3 3.155
解得: s1 2
23
3 0.845
因为实轴上的根轨迹 在( , 4]、[ 2,0] 区间内,所以分离点为s1。 6) 根轨迹与虚轴的交点
系统的闭环特征方程为: s3 6s2 8s K 0
S
32
168 K
K6
8K0
造劳斯表:
SSS
1
为使S1 行为零,应有K 48
由S2 行得辅助方程: 6s2 48 0 解得: s j8 j2.83 根轨迹如图4.1所示。
48
48
图4.1 题4.2(1)根轨迹
(2
n 3。
1)起点:三个开环极点 p1 2, p2 2, p3 4,2)终点:无有限开环零点 m 0。
3)实轴上 ( , 4] 为根轨迹区间。 4)根轨迹渐近线
A
2 2 43 0
83
180(2k 1)
3 0
60,180
5) 求分离点
( , 4] 区间内,且-2为系统开环重极点,所以分离点为s1。
6) 根轨迹与虚轴的交点
系统的闭环特征方程为: s3 8s2 20s 16 K 0 将j 代人s,整理得:(K 8 2 16) j(20 3) 0 由此可得下列联立方程:
K 8
2
16 0
2
(20 ) 0