八年级数学下册《 三角形内角和定理的证明》教案 北师大版

时间:2026-01-14

第六课时 6.5 三角形内角和定理的证明

教学目标

1、知识与技能目标

(1)掌握三角形内角和定理的证明及简单应用。

(2)灵活运用三角形内角和定理解决相关问题。

2、过程与方法

用多种方法证明三角形定理,培养一题多解的能力

1、 情感与态度目标

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.

教学重点:掌握定理证明的方法

教学难点:添加辅助线

教学准备:多媒体课件

教学过程:

第一环节:情境引入

活动内容:(1)用折纸的方法验证三角形内角和定理.

实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38

(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

(1) (2) (3) (4)

试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

第二环节:探索新知

活动内容:

① 用严谨的证明来论证三角形内角和定理.

② 看哪个同学想的方法最多?

D A E C C D 1

方法一:过A点作DE∥BC

∵DE∥BC

∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)

∵∠DAB+∠BAC+∠EAC=180°

∴∠BAC+∠B+∠C=180°(等量代换)

方法二:作BC的延长线CD,过点C作射线CE∥BA.

∵CE∥BA

∴∠B=∠ECD(两直线平行,同位角相等)

∠A=∠ACE(两直线平行,内错角相等)

∵∠BCA+∠ACE+∠ECD=180°

∴∠A+∠B+∠ACB=180°(等量代换)

第三环节:反馈练习

活动内容:

(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

(2)△ABC中,∠C=90°,∠A=30°,∠B=?

(3)∠A=50°,∠B=∠C,则△ABC中∠B=?

(4)三角形的三个内角中,只能有____个直角或____个钝角.

(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?

(7)已知:△ABC中,∠C=∠B=2∠A。

(a)求∠B的度数;

(b)若BD是AC边上的高,求∠DBC的度数?

第四环节:课堂小结

活动内容:

① 证明三角形内角和定理有哪几种方法?

② 辅助线的作法技巧.

2

③ 三角形内角和定理的简单应用.

第五环节:布置作业

1、 第239页随堂练习;第241页习题6.6第1,2,3题

2、 创新设计

板书设计:大屏幕

教学反思

3

八年级数学下册《 三角形内角和定理的证明》教案 北师大版.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:4.9 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:19元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219