A Two-stage Multi-view Analysis Framework for Human Activity

时间:2025-07-09

This paper presents a new framework for a multi-stage multi-view approach for human interactions and activity analysis. The analysis is performed in a distributed vision system that synergistically integrate track- and body-level representations across mul

ATwo-stageMulti-viewAnalysisFrameworkfor

HumanActivityandInteractions

SanghoPark

ComputerVisionandRoboticsResearchLab.

UniversityofCalifornia,SanDiego

LaJolla,CA92037parks@ucsd.edu

Abstract

Thispaperpresentsanewframeworkforamulti-stagemulti-viewapproachforhumaninteractionsandactivityanalysis.Theanalysisisperformedinadistributedvisionsystemthatsynergisticallyintegratetrack-andbody-levelrepresentationsacrossmultiplecameras.Oursystemaimsatversatileandeasily-deployablesystemthatdoesnotre-quirecarefulcameracalibration.Maincontributionsofthepaperare:(1)context-dependentcamerahandoverforocclusionhandling,(2)switchingthemulti-stageanalysisbetweentrack-andbody-levelrepresentations,and(3)ahypothesis-veri cationparadigmfortop-downfeedbackex-ploitingspatio-temporalconstraintsinherentinhumanin-teraction.Experimentalevaluationshowstheef cacyoftheproposedsystemforanalyzingmulti-personinteractions.Currentimplementationusestwoviews,butextensiontomoreviewsisstraightforward.

1.IntroductionandMotivation

Analysisofmulti-personinteractionsinvolvingobjectsisanimportantresearchproblemincomputervisionforawiderangeofpotentialapplications:videosurveillance,securityenforcement,eventannotation,motionanalysisinsports,etc.Multi-personinteractionraisesparticularlydif- cultissuesincomputervision:occlusionbetweenobjectsandbodydeformationduringinteraction.

Fig.1illustratesmulti-personinteractionsituationswherethetwo-stagemulti-viewanalysiswouldbene t.Asingle-camerasystem(Fig.1(a))withviewingdirectionV1maybesuf cientformonitoringthetwo-personinteractionAisbetweenappropriatepersons(i.e.,Pwith1andthePviewing2,givendirectiontheimagingV1conditionorthogo-naltotheinteractionplanethatspansP1,A,andP2.)Iftheinteractionplaneisnotperpendiculartotheviewingdi-

MohanM.Trivedi

ComputerVisionandRoboticsResearchLab.

UniversityofCalifornia,SanDiego

LaJolla,CA92037mtrivedi@ucsd.edu

Figure1.Top-downviewdiagramsformulti-viewanalysisofhumaninteractions.

rection,however,thesingle-camerabasedmonitoringgetsmoredif cultduetotheocclusionandthechangeofap-pearance.Withmorethantwopersonsinvolved(Fig.1(b)),amulti-viewsystemmaybeinevitableevenintheop-timalviewingconditions;i.e.,theviewing-directions,V1andV2,areoptimalformonitoringtheinteractions,AandBspectively.,betweenAsthethepersonspersonsP1moveandParound2,and(Fig.P2and1(c)),P3,there-dynamicselectionandcoordinationofmultipleviewsgetsimportant,whichisachallengingproblemincomputervi-sion;Theincorporationofmultiplecamerasrequiresdatafusionfromeachcamera.Maindif cultiesinthedatafu-sionfrommultiplecamerasincludesthequestionofhowtodecidewhenandwhichcamerainputstofusefor2Dand3Dimageanalysis.involved,

Anintegratedunderstandingofhumanactivityinvolvingbodydeformationwouldrequiremultiplelevelsofanalysis;weconsidertwo

stagesofdetail:track-levelandbody-levelanalyses.Atthetracklevel,humanactivityisanalyzedintermsofthetracksofmovingGaussianellipsesthatencom-passindividualpersons.Atthebodylevel,humanactivityisanalyzedinmoredetailintermsofthecoordinatedpos-tureandgesturepatternsofthebodypartssuchasupperbodyandlowerbody.Majorchallengesinthetwo-stageanalysisincludesthemaintenanceofcoherencebetweenthetwoanalysisstages;Howcanavisionsystemswitchdiffer-

This paper presents a new framework for a multi-stage multi-view approach for human interactions and activity analysis. The analysis is performed in a distributed vision system that synergistically integrate track- and body-level representations across mul

Figure2.Theoverallsystemarchitecture.

entanalysislevelsdependingontheimagingqualityunderocclusion?Theabovetwoquestions(i.e.,multi-viewfu-sionandtwo-stagefusion)maynotbeachievedbyasim-pleuni-directionalbottom-uportop-downvisionprocess.Indeed,bidirectionalprocesswithsomefeedbackmecha-nismisdesirable,whichwouldinvolveincorporationoftop-downhypothesesabouthumaninteractionsandbottom-upvisionprocesses.

Majorityofpreviousstudiesonhumanactivityanaly-sishavefocusedontrack-level,single-perspectiveanalysis.Reviewsofgeneralresearchonhumanmotionunderstand-ingcanbefoundin[1].Majorityoftheapproachestobe-havioranalysisarebasedoneitherbodyfeaturesfromasingle-viewmodalityorcompositefeaturesfrommultipleviewssuchashistogramof3Dvoxel[4],withcalibratedcameras[8]oruncalibratedcameras[5].Areviewofdis-tributedsurveillancesystemscanbefoundin[13].Mostofgesturerecognitionstudieshaveaimedatlearningiso-latedgesturesofasinglepersonwithcertainassumptionsaboutcameracon guration.Multi-viewtrackingandcam-erahandoverstudieshavenotbeenactivelyrelatedinactiv-ityrecognitionstudies.

Inthispaper,weproposeanewframeworkfortheanaly-sisofmulti-personactivityinadistributedvisionsystembyasynergisticintegrationofthetrack-andbody-levelrep-resentationsacrossmultipleviews.Maincontributionsofthepaperare:(1)context-dependentcamerahandoverforocclusionhandling,(2)switchingthemulti-levelanalysisbetweentrack-andbody-levelrepresentations,and(3)in-tegrationofdata-drivenbottom-upprocessandknowledge-driventop-downprocessforhumanactivityunderstanding.

2.SystemOverview

Fig.2showstheoverallsystemarchitecture.Lightgraymodulescomposethebasicsingle-viewsystem,whilethebright(yellow)modulescomposethemulti-viewfunction-ality.Darkgraymodulecanworkeitherinsingle-ormulti-viewmodes,butmorecamerascanincreasetheoverallac-curacy.Currently,twocamerasareusedforsynchronizedviews,whichareforeground-segmentedandcombinedtoformaplanar-homographymapfor3Dfootagelocationsofthepersons.Thehomographymapisusedforthetrack-levelanalysis.Thecamerahandoversearchesforunoc-cludedpersonviewsforthebody-levelanalysis.Boththetrack-andbody-levelanalysiscanbeusedfortheactiv-ityanalysisdependingonanalysis …… 此处隐藏:19412字,全部文档内容请下载后查看。喜欢就下载吧 ……

A Two-stage Multi-view Analysis Framework for Human Activity.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219