电热水器水温水位控制系统设计-毕业论文定稿
发布时间:2024-10-12
发布时间:2024-10-12
电热水器水温水位控制系统设计
摘 要
本系统是为电热水器水温水位控制系统而设计的。在电热水器温控系统中,水温和水位传感器起着举足轻重的作用。系统的分析了耐高温电容式液位传感器分别检测水温和水位的原理,以 AT89S51单片机为核心,实现对水温和水位、上水测量、显示、报警等功能,并以电磁阀、继电器为阀门开关全自动加热、上水。整个系统精度高,耐高温性强,易于调整,测试方便。测试结果表明,误差小于2%,达到设计要求。
关键词:AT89S51单片机,水温水位,传感器,检测与控制
THE SYSTEM FOR CONTROL THE TEMPERATURE AND
LEVEL OF THE ELECTRIC WATER HEATER
ABSTRACT
This system is design to measure and control the water lever and temperature for the water-heaer.It’s composed of two sensor (a digital chip DS18B20 and a lever sensor),display,buzzer and so on,all these component are control of the core chip AT89S51. This system can display the lever and the temperature in the water_case .In addition,it will be heaet or add water automatic through electromagnetism vave or relay which are controled by AT89S51. The whole system is easy to adjust.It is proved to be reliable and of high value and high feasibility after testing.
Key Words: AT89S51,control, seasor,temperature and level
目录
第1章 绪论 ............................................. 1 第2章 设计思路及要求 ................................... 2
2.1 本设计的目的和意义 ........................................... 2 2.2 控制系统的设计要求 ........................................... 2 2.3 本设计实现思路及方法 ......................................... 2
第3章 硬件设计 ......................................... 4
3.1 控制系统组成及工作原理 ....................................... 4 3.1.1 系统结构 ................................................. 4 3.1.2 控制系统组成 ............................................. 5 3.2 单片机概述 ................................................... 6 3.3 器件介绍 ..................................................... 7 3.3.1 AT89C51单片机 ............................................ 7 3.3.2 数码管显示 ............................................... 8 3.4
AT89C51
单片机的最小系统 ..................................... 9
3.5 AT89C51单片机时钟电路 ....................................... 10 3.6 AT89S51单片机复位电路 ....................................... 10
第4章 单元模块设计 .................................... 12
4.1 水位检测模块 ................................................ 12 4.2 温度检测模块 ................................................ 12 4.3 键盘模块 .................................................... 13 4.4 显示模块 .................................................... 14
第5章 软件设计 ........................................ 15
5.1 软件设计原理及设计所用工具 .................................. 15
5.2 显示子程序 .................................................. 16 5.2.1 系统正常工作子程序 ...................................... 16 5.2.2 设定预置温度子程序 ...................................... 17 5.2.3 设定预置水位子程序 ...................................... 18
第6章 系统调试与原理图 ................................ 19 第7章 总结与体会 ...................................... 20参考文献 ................................................ 21附录1 .................................................. 22附录2 .................................................. 23附录3 .................................................. 34致谢 ................................................... 35作品(软件)使用说明书 .................................. 36
第1章 绪论
近年来,随着用电的普及和燃气燃油价格上涨的影响,电热水器的市场上升趋势更加明显,新生力量快速电热水器以其加热快速、体积小巧、安全节能的明显优势在市场中一枝独秀倍受瞩目。
据了解,近年来我国热水器的销量每年以25%的速度上升,而整个热水器市场上,燃气热水器、太阳能热水器颓势未改,继续出现负增长,电热水器阵营已经占到了约60%的市场比例,其中快速电热水器几何式的发展势态拉动整体热水器市场持续走高,。
数据显示,目前快速电热水器行业的年增长率高达200%多,是家电行业增长最快的品类,2008年国内快速电热水器的市场容量增长到66万台。预计未来3至5年内,快速电热水器将全面迎来爆炸式的增长,超过所有传统热水器成为市场的主导产品。业内专家分析,国家住宅用电标准的提高和全国电网的大规模建设改造,将为快速电热水器的普及使用带来良好的发展契机.
据国内著名家电品牌营销企划公司及专家分析预测,2011年,即热式电热水器成为最具投资价值的新品类商机之一,理由是:从市场需求量上来讲,目前国内即热式电热水器年需求量在35万台~40万台,中国即热式电热水器市场销售比率只占5%,而国际市场达50%以上。这一现象与燃气式热水器和储水式电热水器市场高速成长前的征兆一致,意味着快速电热水器市场将迎来空前暴涨的良机。据预测,未来5年,中国市场即热式电热水器的销售比率将达到40%。
第2章 设计思路及要求
2.1 本设计的目的和意义
本设计具有很强的实用性,用成本低廉的电阻式传感器以及电极配以单片机技术对生产实际中的电热水器的水温的控制以及水位的显示。本装置电路简单、实用性强、性价比高、水温控制灵活,水位显示直观醒目。可广泛应用于家庭生活对电热水器的水位显示与水温控制。具有良好的市场前景。
2.2 控制系统的设计要求
1、能够根据水位和水温两个条件控制是否需要进水,每次只进整个水箱的四分之一水量,也可以在手动状态下自由进水(上满时自由停止)或停止进水。
2、控制系统具有手动和自动切换功能; 3、具有水温和水位显示功能;
4、具有进水超水位和超水温报警指示;
5、用水时若水温达不到设置值时,可手动起动加热装置,这样可在很大程度上节约电能;
6、用水时可自由调节水温;
7、控制系统具体管道排空功能,这样防止冬天时因水管内有积水而在夜间冻裂水管。
2.3 本设计实现思路及方法
水位由潜入储水容器不同深度的水位电极和潜入容器底部的公共电极(导线)检测;并由四个绿色LED发光二极管显示:若无水则绿灯不亮;若有四分之一储水箱的水亮一盏绿灯;通过观察绿灯点亮的数量可识别水位的高低,这里取4段显示,也可根据需要进行增减。水温由四个LED数码管显示,前三个数码管显示
的为温度最后一个数码管我们只用到了四段码显示为温度的符号C,水温有效值最多可显示为99.9℃。(+)单片机控制。
第3章 硬件设计
3.1 控制系统组成及工作原理
3.1.1 系统结构
系统组成 : 如图3.1.1所示,本系统主要由控制器、自动控制阀、手动控制阀、水位检测电极、水温检测传感器、电阻加热丝、储水箱等组成
控制器:主要通过里面的电磁阀控制YV1和YV2的通断,控制水温检测传感器检测水温、控制水位检测传感器检测水在水箱中的位置以及控制电阻加热丝加热。自动控制阀:主要通过控制器控制,当水箱中的水的实际温度大于所设置的温度时,自动阀就自动打开往水箱中上水,直到上到上一个目标水位为止。
手动控制阀:当自动阀损坏时,可以通过手动阀进行上下水。
水位检测电极:主要用来检测水箱中水的位置,主要把水箱分成四等分,一共有五个电极,接地的电极放在最水箱的最底下,其余分别放在四等分点上,比如当水箱中的水在第一等分和第二等分之间,则显示水箱中有四分之一的水,当超过第二等分,则显示二分之一的水。
水温检测传感器:主要用来检测水箱中水的实际温度。
电阻加热丝:主要用来加热水箱中水,使其达到用户所需要的温度。 太阳能热水器利用微机控制主要有以下几种控制功能:晨水加热控制、温水循环控制、冷水集热控制、水箱加热控制。
3.1.2 控制系统组成
电热水器控制系统的组成如图3.1.2所示。整个系统以AT89C51单片机为核心,对水温、水位等参数进行智能检测和显示,读取水流开关、排空阀门的状态,经键盘操作和单片机内部运算比较,控制相应得执行机构进行通、断电;进行防漏电、防干烧等保护,并进行相应得声光报警。
对水箱水温信号的检测采用DALLAS公司生产的一线式数字温度传感器DS18B20,它具有3引脚TO-92小体积封装形式,CPU只需一根端口线就能与DS18B20通信控制读取温度值。水流开关信号的检测采用开关式传感器,其内部是一个霍尔开关,排空阀是一个带行程开关的球型阀,由5W交流伺服电机带动,每旋转90度输出一个开关信号,排空阀的开闭状态对应于该开关信号。上水电磁阀采用12V
直流单项电磁阀;辅助电加热体的通断电采用继电器控制;排空阀由
36V(5W)交流伺服电机带动,由排空阀的开闭状态信号确定并通过继电器控制交流伺服电机电源通断电。
图3.1.2控制系统组成
3.2 单片机概述
图3.2时钟电路与复位电路
图3中,晶体振荡器的频率选6MHZ,复位电路采用上电复位,电路参数如图中所示,以满足系统复位时两个机器周期的高电平的要求。由于CPU的内部已含有程序存储器,所以EA引脚接高电平。
该水位自动显示控制器采用AT89C51单片机,机内有一高增益反相放大器,构成自激振荡电路,振荡频率取6MHz,外接6MHz晶振,两个电容C1、C2取20pF,以便于起振荡的作用。右图中XTAL1为内部时钟工作电路的输入,XTAL2为来自反向振荡器的输出
该水位自动显示控制器采用上电复位电路,由R14、C3构成复位电路,在上电瞬间,产生一个脉冲,AT89C51将复位。为保证可靠复位,脉冲宽度应大于两个机器周期,这取决于R、C时间长数。取电容C=10uF,电阻R=10K。
3.3 器件介绍
3.3.1 AT89C51单片机
AT89C51是一个低功耗高性能CMOS 8位单片机,4k Bytes Flash只读程序存储器(ROM),512 Bytes 内部数据存储器(RAM),该微处理器采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,引脚兼容80C51和80C52芯片,片内的Flash存储器可以像常规程序存储器一样进行烧写,AT89S51片内总共有256字节的用户数据区,而128字节的内部扩展数据区需通过清SFR(8EH)的位1并用MOVX指令访问,片内置通用8位中央处理器和Flash存储单元,另一个256BytesRAM区与ATMEL之AT89系列8052兼容的单片机是一致的,AT89C51结合通用的8位微处理器和Flash存储技术构成功能强大单片微处理器,可提供许多高性能低价位的系统控制应用场合。
AT89C51主要特点: 40个引脚,32kBytes的程序存储器,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,内置时钟振荡器,其Flash存储器,可反复擦写1000次的Flash存储器可有效地降低开发成本。软件设置电 源省电模式,睡眠其间,定时/计数器,串行口和中断口均停止工作,RAM中的数据被“冻结”,直到下次被中断激活或硬件复位方可恢复工作。
图3.7.1 AT89C51单片机
3.3.2 数码管显示
由单片机的定时器To做16位计数器(为便于数据处理,这里只用低8位计数值,即寄存器TL0中的值)。一边记录脉冲数量,一边以厘米为单位由四位数码管显示出来。四位数码管采用动态扫描方式显示。
长度计量仪采用0.5英寸共阳极连接的LED数码管。LED数码管由发光二极管作为显示字段的数码型显示器件。下图为LED图数码管外形和引脚图,其中7只发光二极管分别对应a-g笔段,构成“日”字形,另一只发光二极管DP作为小数点,因此这种LED显示器称为八段数码管。共阳极型LED数码管,是将各段发光二极管的阳极连在一起,作为公共端com,应接高电平。a——g、Dp各笔段中,某笔段接低电平时发光,高电平时不发光。为了节省单片机I/O口的数量,将各位数码管的a——g对应笔画并联起来分别与单片机的P2.0——P2.7引脚连接。显示时,由P2口依次输出各位数字的笔段码,并依次由P1.0、P1.1、P1.2、P1.3输出低电平位选信号接通数码管的公共端,轮流进行,循环不止,由于循环的频率较高(约50Hz),加上人眼的视觉暂留,既保障了各位数字的对应显示,又不会出现闪烁现象,实现动态扫描显示。
图3.7.2 LED数码管
3.4 AT89C51单片机的最小系统
所谓最小系统,即指使单片机能正常工作的所需的最少的电路,即应包含CPU及辅助电路、ROM、RAM及I/O端口等电路。由于AT89C51内部已经包含4KB的Flash Memory程序存储器,所
以无需再扩展片外程序存储器。在AT89C51的基础上,加复位电路、时钟电路、EA引脚信号及电源即可。结合资料及所学过的内容,得到如图3.4所示的单片机最小系统。
图3.4 AT89S51单片机最小系统
图3-6中,晶体振荡器的频率选6MHZ,复位电路采用上电复位,电路参数如图中所示,以满足系统复位时两个机器周期的高电平的要求。由于CPU的内部已含有程序存储器,所以EA引脚接高电平。
3.5 AT89C51单片机时钟电路
该水位自动显示控制器采用AT89C51单片机,机内有一高增益反相放大器,构成自激振荡电路,振荡频率取6MHz,外接6MHz晶振,两个电容C1、C2取20pF,以便于起振荡的作用。
右图中XTAL1为内部时钟工作电路的输入,XTAL2为来自反向振荡器的输出。
图3.5时钟电路
3.6 AT89S51单片机复位电路
该水位自动显示控制器采用上电复位电路,由R14、C3构成复位电路,在上电瞬间,产生一个脉冲,AT89S51将复位。为保证可靠复位,脉冲宽度应大于两个机器周期,这取决于R、C时间长数。取电容C=10uF,电阻R=10K。
电热水器水温水位控制系统设计
第 11 页
第4章 单元模块设计
4.1 水位检测模块
把储水箱大致分为四个等份,水位由潜入太阳能热水器的储水箱不同深度的水位电极和潜入储水箱底部的公共电极(导线)进行检测;由单片机依次使各水位电极呈现高电平,由公共电极所接的三极管进行电 位转换,水位到达的电极,转换电位为低(0);水位没有到达的电极,转换电位为高(1);每检测一位便得到一位数据,5个电极检测一遍以后便得到了5个串行数据,然后把这5个数据转化为字节一路送发光二极管;在这里我们可以用发光二极管亮的盏数来显示水位的高低。(若没有发光二极管亮则表示箱内没有水或者只有少量的水,若有一个发光二极管灯亮则表示箱内有四分之一箱的水,以此类推,若有四个发光二极管亮,则表示水箱水是满的。)
图3.3水位检测电路
4.2 温度检测模块