人教版八年级数学下册《19.3 课题学习:选择方案》ppt课件
时间:2025-07-06
时间:2025-07-06
八年级
下册
19.3 课题学习学科网 学科网
选择方案(1)
课件说明 学习目标: 1.会用一次函数知识解决方案选择问题,体会函数 模型思想; 2.能从不同的角度思考问题,优化解决问题的方法; 3.能进行解决问题过程的反思,总结解决问题的方 法. 学习重点: 建立函数模型解决方案选择问题.
下表给出A,B,C 三种上宽带网的收费方式:收费方式 月使用费/元 包时上网时间/h 超时费/(元/min)
AB C
3050 120
2550 不限时
0.050.05
选取哪种方式能节省上网费? 该问题要我们做什么?选择方案的依据是什么? 根据省钱原则选择方案
要比较三种收费方式的费用,需要做什么? 分别计算每种方案的费用. 怎样计算费用?费用
= 月使用费 +
超时费×
超时费
= 超时使用价格
超时时间
A,B,C 三种方案中,所需要的费用是固定的还 是变化的?学科网
方案C费用固定; 方案A,B的费用在超过一定时间后,随上网时间 变化,是上网时间的函数.
请分别写出三种方案的上网费用y 元与上网时间t h 之间的函数解析式.学科网
30, 0≤t≤25; 方案A费用: y1= 3t-45, t>25. 50, 0≤t≤50; 方案B费用: y2= 3t-100,t>50.方案C费用: y3=120.
能把这个问题描述为函数问题吗? 设上网时间为 t,方案A,B,C的上网费用分别为 y1 元,y2 元, y3 元,且 50, 0≤t≤50; 30, 0≤t≤25; y2= y3=120. y1= 3t-100,t>50. 3t-45, t>25. 请比较y1,y2,y3的大小. 这个问题看起来还是有点复杂,难点在于每一个函 数的解析都是分类表示的,需要分类讨论,而怎样分类 是难点.怎么办? ——先画出图象看看.
分析问题y
30, 0≤t≤25; 120 A y1= 3t-45, t>25. 50, 0≤t≤50; B y2= 50 3t-100,t>50. 30 C y3=120.O
y1
y2 y3
25
50
75
t
分类:y1<y2<y3时,y1最小; y1=y2<y3时,y1(或y2)最小; y2<y1<y3时,y2最小; y1>y3,且y2>y3时,y3最小.
解决问题解:设上网时间为t h,方案A,B,C的上网费用分 别为y1 元,y2 元, y3 元,则 50, 0≤t≤50; 30, 0≤t≤25; y2= y3=120. y1= 3t-100,t>50. 3t-45, t>25. 结合图象可知: 2 (1)若y1=y2,即3t-45=50,解方程,得t =31 3 ;
2 (2)若y1<y2,即3t-45<50,解不等式,得t<31 3 ; 2 (3)若y1>y2,即3t-45>50,解不等式,得t>31 3 .
1 解:令3t-100=120,解方程,得t =73 3 ; 1 令3t-100>120,解不等式,得t>73 3 .学科网 学科网
当上网时间不超过31小时40分,选择方案A最省钱; 当上网时间为31小时40分至73小时20分,选择方案 B最省钱; 当上网时间超过73小时20分,选择方案C最省钱.
这个实际问题的解决过程中是怎样思考的?
实际问题
设变量 找对应关系
一次函数问题
实际问题的解
解释实 际意义
一次函数问题的解
某学校计划在总费用2 300 元的限额内,租用汽车 送234 名学生和6 名教师集体外出活动,每辆汽车上至 少要有1 名教师.现在有甲、乙两种大客车,它们的载 客量和租金如下表: 载客量(单位:人/辆) 租金(单位:元/辆) 甲种客车 乙种客车 45 30 400 280
(1)共需租多少辆汽车? (2)给出最节省费用的租车方案.
问题1 影响最后的租车费用的因素有哪些? 主要影响因素是甲、乙两种车所租辆数. 问题2 汽车所租辆数又与哪些因素有关? 与乘车人数有关. 问题3 如何由乘车人数确定租车辆数呢? (1)要保证240 名师生都有车坐,汽车总数不能小 于6 辆; (2)要使每辆汽车上至少有1 名教师,汽车总数 不能大于6 辆.
问题4 在汽车总数确定后,租车费用与租车的种类 有关.如果租甲类车x 辆,能求出租车费用吗? 设租用 x 辆甲种客车,则租用乙种客车的辆数为 (6-x)辆;设租车费用为 y,则 y =400x+280(6-x) 化简 得 y =120x+1 680.
问题5
如何确定 y =120x+1 680中 y 的最小值.
(1)为使240 名师生有车坐,则 45x+30(6-x)≥240; (2)为使租车费用不超过2 300 元,则 400x+280(6-x)≤2 300.45x+30(6-x)≥240 由 得 400x+280(6-x)≤2 300
31 4≤x≤ . 6
据实际意义可取4 或5; 因为 y 随着 x 的增大而增大,所以当 x =4 时,y 最 小,y 的最小值为2 160.
解:设租用x 辆甲种客车,则租用乙种客车的辆数 为(6-x)辆;设租车费用为 y,则 y =400x+280(6-x) 化简 得 y =120x+1 680. (1)为使240 名师生有车坐,则 45x+30(6-x)≥240; (2)为使租车费用不超过2 300 元,则 400x+280(6-x)≤2 300. 45x+30(6-x)≥240 31 由 得 4≤x≤ . 400x+280(6-x)≤2 300 6
…… 此处隐藏:261字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:AutoTune音高修正快速入门