专家讲解公考数学运算之方阵问题
时间:2026-01-17
时间:2026-01-17
就
专家讲解公考数学运算解题技巧
一、方阵问题
学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果 行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:
1.方阵总人数=最外层每边人数的平方(方阵问题的核心)
2.方阵最外层每边人数=(方阵最外层总人数÷4)+1
3.方阵外一层总人数比内一层总人数多2
4.去掉一行、一列的总人数=去掉的每边人数×2-1
例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?
A.256人 B.250人 C.225人 D.196人 (2002年A类真题) 解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)
整个方阵共有学生人数:16×16=256(人)。
所以,正确答案为A。
例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?
分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:
去掉一行、一列的总人数=去掉的每边人数×2-1
· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·
解析:方阵问题的核心是求最外层每边人数。
原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17 方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)
例3 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是:
A.1元 B.2元 C.3元 D.4元 (2005年中央真题) 解析:设当围成一个正方形时,每边有硬币X枚,此时总的硬币枚数为4(X-1),当变成三角形时,则此时的硬币枚数为3(X+5-1),由此可列方和为
4(X-1)=3(X+5-1)解得
X=16 总的硬币枚数为60,则总价值为3元。
所以,正确答案为C。
5、某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?
就
二、最小公倍数与最大公约数
1.关键提示:
最小公倍数与最大公约数的题一般不难,但一定要细致审题,千万不要粗心。另外这类题往往和日期(星期几)问题联系在一起,考生也要学会求余。
2.核心定义:
(1)最大公约数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。
(2)最小公倍数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数.公倍数中最小的一个大于零的公倍数,叫这几个数的最小公倍数。
例题1:甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要:
A.60天 B.180天 C.540天 D.1620天 (2003年浙江真题) 解析:下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。
所以,答案为B。
例题2:三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几?
A.星期一 B.星期二 C.星期三 D.星期四
解析:此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1,
所以,下一次相会则是在星期三,选择C。
例题3:赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?( )
A.1/2 B.1 C.6 D.12
解析:此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。 所以,答案为B。
三、和、差倍问题
核心要点提示:
和、差倍问题是已知大小两个数的和(或差)与它们的倍数关系,求大小两个数的值。
(和+差)÷2=较大数