中考数学压轴题精编--浙江篇(试题及答案)

发布时间:2024-08-31

2014年中考数学压轴题精编—浙江篇

1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =4

1x 2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.

(1)写出点M 的坐标;

(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x

②当梯形CMQP 的两底的长度之比为1 :

2时,求t 1.解:

(1)∵OABC 是平行四边形,∴AB

∥OC ,且AB =OC =4

∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴A ,B 的横坐标分别是2和-2

代入y =4

1x 2+1,得A (2,2),B (-2,2) ∴M (0,2) ················································· 2分 (2)①过点Q 作QH ⊥x 轴于H ,连接CM

则QH =y ,PH =x -t

由△PHQ ∽△COM ,得:2y =4

t x ,即t =x -2y ∵Q (x ,y )在抛物线y =4

1x 2+1上 ∴t =-21x 2+x -2 ··········································· 4分 当点P 与点C 重合时,梯形不存在,此时,t =-4,解得x =1±5

当Q 与B 或A 重合时,四边形为平行四边形,此时,x =±2

∴x 的取值范围是x ≠1±5且x ≠±2的所有实数 ········································ 6分

②分两种情况讨论:

ⅰ)当CM >PQ 时,则点P 在线段OC 上

∵CM ∥PQ ,CM =2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍

即2=2(

41x 2+1),解得x =0 ∴t =-2

1×02+0-2=-2 ········································································· 8分 ⅱ)当CM <PQ 时,则点P 在OC 的延长线上

∵CM ∥PQ ,CM =

21PQ ,∴点Q 纵坐标为点M 纵坐标的2倍 即41x

2+1=2×2,解得:x =±32 ························································· 10分 当x =-32时,得t =-21×(-32)2-32-2=-8-32

当x =32时,得t =-

2

1

×(32)2+32-2=32-8 ································ 12分 2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).

②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).

(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果MK 2

+CK 2

=AM 2

,请直接写出∠CDF 的度数和AM MK

的值. 2.解:

(1)①= ②> ················································································· 4分 (2)> ································································································ 6分 证明:作点C 关于FD 的对称点G ,连接GK 、GM 、GD 则GD =CD ,GK =CK ,∠GDK =∠CDK ∵D 是AB 的中点,∴AD =CD =GD ∵∠A =30°,∴∠CDA =120°

∵∠EDF =60°,∴∠GDM +∠GDK =60° ∠ADM +∠CDK =60°

∴∠ADM =∠GDM . ·············································································· 9分 又∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM

∵GM +GK >MK ,∴AM +CK >MK . ······················································· 10分 (3)∠CDF =15°,

AM

MK

=23. ···························································· 12分

3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,P 为对

D

B C

A

F E

M K 图1

D

B

C A

(F ,K )

E

M 图2

D

B

C F

E

K

图3

)

D

B

C

A

F E

M K

图4

D

B

C A

F

E

M

K

G

称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;

(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形? 3.解:

(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB , ∴∠HQD =∠C =90°,HD =HA

∴∠HDQ =∠A . ··················································································· 3分 ∴△DHQ ∽△ABC . ··············································································· 4分 (2)①如图1,当0<x

≤2.5时

ED =10-4x ,QH =AQ ·tan ∠A =4

3

x 此时y =21(10-4x )·43x =-23x

2+4

15x ······················································ 6分

当x

45时,y 最大=32

75

················································ 7分 ②如图2,当2.5<x

≤5时

ED =4x -10,QH =AQ ·tan ∠A =4

3

x

此时y =21(4x -10)·43x =23x

2-4

15

x ······························ 9分

当x =5时,y 最大=

4

75

∴y 与x 之间的函数解析式为y =⎪⎩⎪⎨⎧-+-x x x x 415

2

3415

2322

y 的最大值是4

75

. ····················································· 10分

(3)①如图1,当0<x

≤2.5时

若DE =DH ,∵DH =AH =A QA ∠cos =4

5

x ,DE =10-4x

∴10-4x =45x ,∴x =21

40

显然ED =EH ,HD =HE 不可能; ···························································· 11分 ②如图2,当2.5<x

≤5时

若DE =DH ,则4x -10=45x ,∴x =11

40

; ·················································· 12分 若HD =HE ,此时点D ,E 分别与点B ,A 重合,x =5; ······························· 13分 若ED =EH ,则△EDH ∽△HDA

(0<x

≤2.5)

(2.5<x

≤5)

(图1)

(图2)

∴DH ED =AD DH ,即x x 4

5104-=x x 245,∴x =103320 ············································ 14分 ∴当x 的值为2140,1140,5,103

320时,△HDE 是等腰三角形.

4.(浙江省温州市)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB l ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒.

(1)当t 为何值时,AD =AB ,并求出此时DE 的长度;

(2)当△DEG 与△ACB 相似时,求t 的值;

(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后

的图形为A ′C ′.

①当t >5

3时,连结C ′C ,设四边形ACC ′A ′ 的面积为S , 求S 关于t 的函数关系式;

②当线段A ′C ′ 与射线BB 1有公共点时,求t 的取值范围

(写出答案即可). 4.解:

(1)∵∠ACB =90°,AC =3,BC =4

∴AB =2243

+=5 ················································································ 1分 ∵AD =5t ,CE =3t ,∴当AD =AB 时,5t =5

∴t =1 ·································································································· 2分

∴AE =AC +CE =3+3t =6 ········································································ 3分

∴DE =6-5=1 ······················································································ 4分

(2)∵EF =BC =4,G 是EF 中点,∴GE =2

当AD <AE (即t <2

3)时,DE =AE -AD =3+3t -5t =3-2t 若△DEG 与△ACB 相似,则

EG DE =BC AC 或EG DE =AC BC ∴223t -=43或223t -=3

4 ∴t =43或t =6

1 ······················································································ 6分 当AD >AE (即t >2

3)时,DE =AD -AE =5t -(3+3t )=2t -3 若△DEG 与△ACB 相似,则

EG DE =BC AC 或EG DE =AC BC ∴232-t =43或232-t =34 D B H A

E G

F C B 1

∴t =

49或t =6

17 ···················································································· 8分 综上所述,当t =43或61或49或6

17

时,△DEG 与△ACB 相似 (3)①由轴对称变换得AA ′⊥DH ,CC ′⊥DH ∴AA ′∥CC ′

易知OC ≠AH ,故AA ′≠CC ′

∴四边形ACC ′A ′

是梯形 ······································· 9分

∵∠A =∠A ,∠AHD =∠ACB =90° ∴△AHD ∽△ACB ,AC AH =BC DH =

AB

AD

∴AH =3t ,DH =4t ∵sin ∠ADH =sin ∠CDO ,∴AD AH =

CD

CO

53=

35 t CO ,∴CO =3t -5

9

∴AA ′=2AH =6t ,CC ′=2CO =6t -518····················· 10分

∵OD =CD ·cos ∠CDO =(5t -3)×54=4t -512

∴OH =DH -OD =5

12

············································································ 11分 ∴S =21(

AA ′+CC ′ )·OH =21(6t +6t -518)×512=572t -25

108 ························· 12分 ②

65≤t

≤30

43 ···················································· 14分 略解:当点A ′

落在射线BB 1上时(如图甲),AA ′=AB =5

∴6t =5,∴t =6

5

当点C ′

落在射线BB 1上时(如图乙),易得CC ′∥AB

故四边形ACC ′B 是平行四边形 ∴6t -518=5,∴t =30

43

65≤t

≤30

43

5.(浙江省湖州市)如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不含端

点A ,D ),连结PC ,过点P 作PE ⊥PC 交AB 于E .

(1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量关系;

若不存在,请说明理由;

(2)当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围.

A P D

E

D B H

A

E

G F C

B 1

C ′ O A ′

D B H

A E

G F

C

B 1

(图乙)

C ′ O

D B H A

E

G

F C B 1

(A ′) (图甲)

5.解:

(1)假设存在这样的点Q

∵PE ⊥PC ,∴∠APE +∠DPC =90°

∵∠D =90°,∴∠DPC +∠DCP =90°

∴∠APE =∠DCP ,又∵∠A =∠D =90°

∴△APE ∽△DCP ,∴

DC AP =DP AE ,∴AP ·DP =AE ·DC 同理可得

AQ ·DQ =AE ·DC ∴AQ ·DQ =AP ·DP ,即AQ ·(3-AQ )=AP ·(3-AP ) ∴AP 2-AQ 2=3AP -3AQ ,∴(AP +AQ )(AP -AQ )=3(AP -AQ )

∵AP ≠AQ ,∴AP +AQ =3 ··························································· 2分

∵AP ≠AQ ,∴AP ≠2

3,即P 不能是AD 的中点 ∴当P 是AD 的中点时,满足条件的Q 点不存在

所以,当P 不是AD 的中点时,总存在这样的点Q 满足条件

此时AP +AQ =3 ········································································ 3分

(2)设AP =x ,AE =y ,由AP ·DP =AE ·DC 可得x (3-x )=2y

∴y =21x (3-x )=-21x

2+23x =-21(x -23)2+89 ∴当x =23(在0<x <3范围内)时,y 最大值=8

9 ∴BE 的取值范围为

87≤BE <2 ······················································ 5分

6.(浙江省湖州市)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F .

(1)求经过A 、B 、C 三点的抛物线的解析式;

(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;

(3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值.

B C A P D E Q

6.解:

(1)由题意得A (0,2),B (2,2),C (3,0)

设所求抛物线的解析式为y =ax 2+bx +c

则⎩⎪⎨⎪⎧c =24a +2b +c =29a +3b +c =0

解得⎩⎨⎧a =-32b =34c =2 .......................................................... 3分 ∴抛物线的解析式为y =-32x 2+34x +2 .. (4)

(2)设抛物线的顶点为G ,则G (1,38),过点G 作GH ⊥AB 于则AH =BH =1,GH =3

8-2=32 ∵EA ⊥AB ,GH ⊥AB ,∴EA ∥GH

∴GH 是△BEA 的中位线,∴EA =2GH =3

4 ····························过点B 作BM ⊥OC 于M ,则BM =OA =AB

∵∠EBF =∠ABM =90°,∴∠EBA =∠FBM =90°-∠ABF

∴Rt △EBA ≌Rt △FBM ,∴FM =EA =3

4 ∵CM =OC -OM =3-2=1,∴CF =FM +CM =

37 ········································ 8分 (3)设CF =a ,则FM =a -1或1-a

∴BF 2=FM 2+BM 2=(a -1)2+2 2=a 2

-2a +5 ∵△EBA ≌△FBM ,∴BE =BF

则S △BEF

=21BE ·BF =21BF 2=21(a 2-2a +5) ·············································· 9分 又∵S △BFC =

21FC ·BM =21×a ×2=a ························································· 10分 ∴S

=21(a 2-2a +5)-a =21a 2-2a +25 即S =

21(a -2)2+2

1 ·············································································· 11分 ∴当a =2(在0<a <3范围内)时, S 最小值 =2

1 ··························································································· 12分

7.(浙江省衢州市、丽水市、舟山市)△ABC 中,∠A =∠B =30°,AB =32.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.

(1)当点B 在第一象限,纵坐标是

2

6

时,求点B 的横坐标; (2)如果抛物线y =ax

2

+bx +c (a ≠0)的对称轴经过点C ,请你探究:

①当a =

45,b =-2

1

,c =-553时,A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.

7.解:

(1)∵点O 是AB 的中点,∴OB =

2

1

AB =3 ··········································· 1分 设点B 的横坐标是x (x >0),则x

2

+(

2

6)2=(3)2 ································· 2分 解得x 1=

26,x 2=-2

6

(舍去) ∴点B

··········································· 4分 (2)①当a =45,b =-2

1

,c =-553时, 得y =45x

2-2

1x -553 即y =

45( x -55)2-20

513 ···································· 5分 以下分两种情况讨论

情况1:设点C 在第一象限(如图甲),则点C 的横坐标为55

OC =OB ·tan30°=3×3

3

=1 ································ 6分

由此,可求得点C 的坐标为(

55,5

52) ················ 7分 点A 的坐标为(-5152,5

15

∵A ,B 两点关于原点对称,∴点B 的坐标为(5152,-5

15

) 将x =-5152代入y =45x

2-2

1x -553,得y =515

,即等于点A 的纵坐标; 将x =

5152代入y =45x

2-2

1x -553,得y =-515,即等于点B 的纵坐标. ∴在这种情况下,A ,B 两点都在抛物线上. ······················································· 9分

(甲)

(乙)

情况2:设点C 在第四象限(如图乙),则点C 的坐标为(

55,-552) 点A 的坐标为(

5152,515),点B 的坐标为(-5152,-515) ∵当x =5152时,y =-515;当x =-5152时,y =5

15 ∴A ,B 两点都不在这条抛物线上. ·································································· 10分

(情况2另解:经判断,如果A ,B 两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A ,B 两点不可能都在这条抛物线上)

②存在.m 的值是1或-1. ············································································ 12分

(y =a (x -m )2 -am 2

+c ,因为这条抛物线的对称轴经过点C ,所以-1≤m ≤1. 当m =±1时,点C 在x 轴上,此时A ,B 两点都在y 轴上.因此当m =±1时,A ,B 两点不可能同时在这条抛物线上)

8.(浙江省宁波市)如图1,在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G .

(1)求∠DCB 的度数;

(2)当点F 的坐标为(-4,0)时,求点G 的坐标;

(3)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△OEF ′ ,记直线EF ′

与射线DC 的交点为H .

①如图2,当点G 在点H 的左侧时,求证:△DEG ∽△DHE ;

②若△EHG 的面积为33,请直接写出点F 的坐标.

8.解:

(1)在Rt △AOD 中,∵tan ∠DAO =AO

DO

=232=3 ∴∠DAB =60° ··········································································· 2分

∵四边形ABCD 是平行四边形

∴∠DCB =∠DAB =60° ······························································· 3分

(2)∵四边形ABCD 是平行四边形

∴CD ∥AB ,∴∠DGE =∠AFE

又∵∠DEG =∠AEF ,DE =AE (图2) (图1) (备用图)

∴△DEG ≌△AEF , ····································································· 4分 ∴DG =AF ,∴AF =OF -OA =4-2=2

∴点G 的坐标为(2,32) ························································· 6分

(3)①∵CD ∥AB ,∴∠DGE =∠OFE

∵△OEF 经轴对称变换后得到△OEF ′

∴∠OFE =∠OF ′E ,∴∠DGE =∠OF ′E ············································ 7分 在Rt △AOD 中,∵E 是AD 的中点,∴OE =

21AD =AE 又∵∠EAO =60°,∴∠EOA =∠AEO =60°

而∠EOF ′=∠EOA =60°,∴∠EOF ′=∠AEO

∴AD ∥OF ′ ·

················································································ 8分 ∴∠OF ′E =∠DEH ,∴∠DEH =∠DGE

又∵∠HDE =∠EDG

∴△DEG ∽△DHE ······································································· 9分 ②点F 的坐标为F 1(-13+1,0),F 2(-13-5,0)··················· 12分 解答如下(原题不作要求,仅供参考):

过点E 作EM ⊥直线CD 于M ,∵CD ∥AB ,∴∠EDM =∠DAB =60° ∴EM =DE ·sin60°=2×

23=3 ∵S △EHG =21GH ·EM =21GH ·3=33 ∴GH =6 ∵△DEG ∽△DHE ,∴

DG DE =DE

DH ∴DE 2=DG ·DH

当点H 在点G 的右侧时,设DG =x ,则DH =x +6

∴4=x (x +6),解得x 1=-3+13,x 2=-3-13(舍去)

∵△DEG ≌△AEF ,∴OF =AO +AF =-3+13+2=13-1

∴F 1(-13+1,0)

当点H 在点G 的左侧时,设DG =x ,则DH =x -6

∴4=x (x -6),解得x 1=3+13,x 2=3-13(舍去)

∵△DEG ≌△AEF ,∴AF =DG =3+13

∴OF =AO +AF =3+13+2=13+5

∴F 2(-13-5,0) 综上所述,点F 的坐标有两个,分别是F 1(-13+1,0),F 2(-13-5,0)

9.(浙江省金华市)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 点重合),以PQ 为边作正方

形PQMN ,使点M 落在反比例函数y =-

x

2

的图像上.小明对上述问题进行了探究,发现不论m 取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M 在第四象限,另一个正方形的顶点M 1在第二象限. (1形PQMN M 1的坐标是____________

(2)请你通过改变P ,若点P 的坐标为(m ,0)时,则b =(3)依据(2 9.解:

(1)如图;M 1的坐标为(-1,2) ·······(2)k =-1,b =m ·····························(3)由(2)知,直线M 1M 的解析式为y 则M (x ,y )满足x (-x +6)=-2 解得x 1=3+11,x 2=3-11 ∴y 1=3-11,y 2=3+11 ∴M 1,M 的坐标分别为:

(3-11,3+11),(3+11,3 ··································

10.(浙江省金华市)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点的坐标分别为(3,0)和(0,33).动点P 从A 点开始沿折线AO -OB -BA 运动,点P 在AO ,OB ,BA 上运动的速 度分别为1,3,2(长度单位/秒).一直尺的上边缘l 从x 轴的位置开始以

3

3

(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点.设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动.

请解答下列问题:

(1)过A ,B 两点的直线解析式是___________________;

(2)当t =4时,点P 的坐标为____________;当t =________,点P 与点E 重合; (3)①作点P 关于直线EF 的对称点P ′,在运动过程中,若形成的四边形PEP ′F 为菱形,则t 的值是多少? ②当t =2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在,求出点Q 的坐标;若不存在,请说明理由.

10.解:

(1)y =-3x +33; ······································································· 4分 (2)(0,3),t =

2

9

; ······················································· 8分(各2分) (3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1)

∵OE =FG ,EP =FP ,∠EOP =∠FGP =90°

∴△EOP ≌△FGP ,∴OP =PG

又∵OE =FG =

33t ,∠A =60°,∴AG = 60

tan FG =31

t 而AP =t ,∴OP =3-t ,PG =AP -AG =

3

2

t 由3-t =32t 得 t =5

9

········································· 9分

当点P 在线段OB 上时,形成的是三角形,不存在菱形;

当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足(如图2)

∵OE =33t ,∴BE =33-33t ,∴EF =

60tan BE =3-31

t ∴MP =EH =

21EF =6

9t

-,又BP =2(t -6) 在Rt △BMP 中,BP ·cos60°=MP 即2(t -6)·

21=69t -,解得t =7

45

······················· 10分 ②存在.理由如下:

∵t =2,∴OE =3

3

2,AP =2,OP =1

将△BEP 绕点E 顺时针方向旋转90°,得到△B ′EC (如图3)

(图1)

(图2)

∵OB ⊥EF ,∴点B ′ 在直线EF 上, C 点坐标为(

332,33

2-1) 过F 作FQ ∥B ′C ,交EC 于点Q ,则△FEQ ∽△B ′EC 由

FE BE =FE E B =QE CE =3,可得Q 点坐标为(-32

,33

··································

·················· 11分

根据对称性可得,Q 点关于直线EF 的对称点Q ′(-3

2

,3)也符合条件.

··············································································· 12分

11.(浙江省绍兴市)如图,设抛物线C 1:y =a (x +1)2-5,C 2:y =-a (x -1)2

+5,C 1与C 2的交点为A ,B ,点A 的坐标是(2,4),点B 的横坐标是-2. (1)求a 的值及点B 的坐标;

(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG .记过C 2顶点M 的直线为l ,且l 与x 轴交于点N .

①若l 过△DHG 的顶点G ,点D 的坐标为(1,2),求点N 的横坐标; ②若l 与△DHG 的边DG 相交,求点N 的横坐标的取值范围.

11.解:

(1)∵点A (2,4)在抛物线C 1上,

∴把点A 坐标代入y =a (x +1)2

-5得a =1

∴抛物线C 1的解析式为y =x

2

+2x -4 ··············································· 1分

设B (-2,b ),则b =-4

∴B (-2,-4) ·········································································· 2分

(2)①如图1

∵M (1,5),D (1,2),且DH ⊥x 轴 ∴点M 在DH 上,MH =5 过点G 作GE ⊥DH ,垂足为E

(图3)

由△DHG 是正三角形得EG =3,EH =1

∴ME =4

设N (x ,0),则NH =x -1

由△MEG ∽△MHN ,得MH

ME =HN EG ∴54=13-x ,∴x =34

5+1 ∴点N 的横坐标为34

5+1 ···························································· 7分

②当点D 移到与点A 重合时,如图2

直线l 与DG 交于点G ,此时点N 的横坐标最大. ······························ 8分 过点G ,M 作x 轴的垂线,垂足分别为点Q ,F ,设N (x ,0)

∵ A (2,4),∴G (2+32,2)

∴NQ =x -2-32,NF =x -1,GQ =2,MF =5

∵△NGQ ∽△NMF ,∴NF

NQ =MF GQ ∴1322---x x =5

2,∴x =38310+ ··············································· 10分 当点D 移到与点B 重合时,如图3

直线l 与DG 交于点D ,即点B ,此时点N 的横坐标最小. ················· 11分 ∵B (-2,-4),∴H (-2,0),D (-2,-4),设N (x ,0)

∵△BHN ∽△MFN ,∴FN NH =MF

BH ∴x x -+12=54,∴x =-3

2 ······························································ 12分 又∵当点D 与原点O 重合时,△DHG 不存在

238310+且

12.(浙江省嘉兴市)如图,已知抛物线y =-21x 2+x +4交x 轴的正半轴于点A ,交y 轴于点B . 图2

图3

中考数学压轴题精编--浙江篇(试题及答案).doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    下载本文档需要支付 7

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219