Effect of quantum fluctuations on the dipolar motion of Bose
时间:2025-05-01
时间:2025-05-01
We revisit dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the strong tunneling limit we reproduce the meanfield results with a
E ectofquantum uctuationsonthedipolarmotionofBose-Einsteincondensatesin
opticallattices
AnatoliPolkovnikovandDaw-WeiWang
PhysicsDepartment,HarvardUniversity,Cambridge,MA02138
(Dated:February2,2008)
arXiv:cond-mat/0311492v3 [cond-mat.soft] 30 Jul 2004
Werevisitdipolarmotionofcondensateatomsinone-dimensionalopticallatticesandharmonicmagnetictrapsincludingquantum uctuationswithinthetruncatedWignerapproximation.Inthestrongtunnelinglimitwereproducethemean eldresultswithasharpdynamicaltransitionatthecriticaldisplacement.Whenthetunnelingisreduced,onthecontrary,strongquantum uctuationsleadto nitedampingofcondensateoscillationsevenatin nitesimaldisplacement.Wearguethatthereisasmoothcrossoverbetweenthechaoticclassicaltransitionat nitedisplacementandthesuper uid-to-insulatorphasetransitionatzerodisplacement.Wefurtheranalyzethetimedependenceofthedensity uctuationsandofthecoherenceofthecondensateand ndseveralnontrivialdynamicale ects,whichcanbeobservedinthepresentexperimentalconditions.
ThestudyofBose-Einsteincondensatesofultracoldatomshasbeengrowingrapidlyinrecentyears1.Load-ingbosenicatomsintoanopticallatticeandenhancingthelaserintensity,itispossibletostronglysuppressthekineticenergyoftheatomsresultinginasuper uid-to-Mott-insulator(SF-MI)quantumphasetransition2,3:inthestrongtunnelinglimitthecondensateisinthesuper- uidphasewith nitephasesti ness,whileitisdriventotheMott-insulatorphaseandlosesthephasecoherencebecauseofquantum uctuationsifthetunnelingbecomessmallenough.Typicalinterferencepatternsobtainedintime-of- ightexperimentscannotprovidesu cientinfor-mationtoseeasharptransitionboundary3,4.
Inone-dimensionalsystemsthecondensatedynam-icshasbeenobservedinadipolarmotionexperiment5,wherethecenter-of-mass(CM)ofthecondensateoscil-latesafterasuddendisplacementofthemagnetictrapwithrespecttotheopticallattice.Thisdynamicscanbedescribedbythemean eldGross-Pitaveskiiequations(GPE)inthestrongtunnelingregime5,6.Whenthedis-placementisbeyondacertaincriticalvalue,thecon-densateoscillationsareoverdamped7andthemotionbe-comescompletelydecoherent,indicatingaclassicallocal-izationtransition8,9.Suchatransitionwasrecentlyob-servedexperimentally10.Itisplausiblethatasthequan-tum uctuationsincrease,thereisasmoothcrossoverbe-tweenthequantum(SF-MI)andtheclassicaltransitions.However,weemphasizethatthe rstoneisasecondor-dertransitioncharacterizedbyreversiblephasecoherenceifthesystemisdriventotheinsulatingphaseandthenbacktotheSF3.Ontheotherhandtheclassicaltransi-tionisirreversible9duetothechaoticexcitationsinsidethecondensatecloud.
Motivatedbythisinterestingandimportantquestion,inthisletterweinvestigatethequantum uctuationef-fectsontheCMmotionofacondensateinaparabolicpotentialinaone-dimensionalopticallatticeusingthetruncatedWignerapproximation(TWA).Inthestrongtunneling(orweaklyinteracting)regime,wereproducethesharpdynamicaltransitionofamean eldcalcula-tion9withacriticaldisplacementproportionaltothesquarerootofthetunnelingamplitude.Whenthetun-
nelingisweakthequantum uctuationsstronglymodifythedynamicsofthecondensateinthefollowingways:(i)theCMmotionisdampedevenforanin nitesimalinitialdisplacement;(ii)theoscillationsbecomeoverdampedatacriticaldisplacement,Dc,whichisbelowtheclas-sicalvalueatthesametunneling;(iii)thecondensatedipolarmotionisfrictionlessfromoneendtoanotherwiththeperiodindependentofdamping,whilethesu-per uidfractionandthephasecoherencedropwhenthecondensatepassesthroughthecenteroftheharmonicwell.(iv)Wefurthershowthatatagivendamping,thelossofcoherenceislessforsmallerdisplacements(orstrongerquantum uctuations).Soasweincreasequantum uctuationsthelocalizationtransitionbecomesmorereversible.Ourresultshencesuggestthatthereisasmoothcrossoverbetweentheclassicallocalizationtran-sitionandthequantumsuper uid-to-insulator(SF-IN)transition11asthedisplacementgoestozero.
ThetruncatedWignerapproximation12hasbeenwellknowninquantumopticsforawhile.Recently,itwasappliedtothesystemsofinteractingbosons13,14.InRef.[14]itwasarguedthatTWAisequivalenttothesemiclassicalapproximationandnaturallyappearsinthequantumexpansionofthetimeevolutionofthesystem.TheideabehindTWAisthattheexpectationvalueofanobservable canbefoundaccordingto:
(t) ≈dψ0dψ0P(ψ0,ψ0) cl(ψ(t),ψ (t),t),(1)whereψandψ denotebosonic eldsobeyingclassicaldiscreteGross-Pitaevskiiequationsofmotion15,16:i ψj
2j2ψj+
U
We revisit dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the strong tunneling limit we reproduce the meanfield results with a
2
theoperator evaluatedontheclassical eldsψ(t)andψ (t).ItisimportanttorealizethatTWAconsiderablyimprovesBogoluibov’stheory,especiallyiftheclassicaldynamicsbecomesunstable14.ThewayweimplementTWAinthisletterisoutlinedinRef.[14].
)
Displacement (D
Inverse Tunneling (1/J)
FIG.1:DynamicalphasediagramforUN=50,andK=0.02(theoccupancyofthecentralsite,N0,isapproximately5%ofthetotalnumberofbosons,N).Thesolidandthedashedlinescorrespondtodampingγ=0.11andγ=0.36respectively.Thelargeseparationbetweenthetwocurvesforstrongerquantum uctuations(smallerN)impliesbroaden-ingofthetransition.TheinsetshowsthetypicaltemporalCMoscillationsforγ≈0.36(dashedline)andγ≈2.1(solidline).
Inadipolarmotionexperiment,thecondensateisini-tially(t<0)preparedinthesuper uidgroundstate.Att=0thetrappositionissuddenlydisplacedbythedistanceD0fromtheoriginandthecondensatestartsto
move.To ndtheWignertransformP(ψ0,ψ0)ofthein-teractinggroundstate,westartfromthenoninteracting