统计学案例——相关回归分析

时间:2025-07-09

《统计学》案例——相关回归分析

案例一质量控制中的简单线性回归分析

1、问题的提出

某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。

2、数据的收集

序号回流温度(℃)

液化气收率

(%)序号回流温度(℃)

液化气收率

(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

36 39 43 43 39 38 43 44 37 40 34 39 40 41 44

13.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

42 43 46 44 42 41 45 40 46 47 45 38 39 44 45

12.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9

目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。

3.方法的确立

设线性回归模型为εββ++=x y 10,估计回归方程为x b b y

10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。

从线性回归的计算结果,可以知道回归系数的最小二乘估计值

b 0=21.263和b 1=-0.229,于是最小二乘直线为

x y

229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。

(3)残差分析

为了判别简单线性模型的假定是否有效,作出残差图,进行残差分析。

从图中可以看到,残差基本在-0.5—+0.5左右,说明建立回归模型所依赖的假定是恰当的。误差项的估计值s=0.388。

(4)回归模型检验

a.显著性检验

在90%的显著水平下,进行t 检验,拒绝域为︱t ︱=︱b 1/ s b1︱>t α/2=1.7011。

由输出数据可以找到b 1和s b1,t=b 1/ s b1=-0.229/0.022=-10.313,于是拒绝原假设,说明液化气收率和回流温度之间存在线性关系。

b.拟合度检验

判定系数r 2=0.792。这意味着液化气收率的样本变差大约有80%可以由它和回流温度的线性关系来解释。

2r r ==-0.89

这样,r 值为y 和x 之间存在中高度的负线性关系提供了进一步的证据。 由于n ≥30,我们近似确定y 的90%置信区间为:

s z y )(ˆ2α±=21.263-0.229x ±1.282×0.388 = 21.263-0.229x ± 0.497

4、结果分析

由回归直线图可知,要保持液化气收率在12.24%以上,回流温度必须控制在34℃以下。因为装置工艺卡片要求回流温度在33—40℃之间,为确保液化气质量合格,可以将回流温度控制在33—34℃之间。为此,应当采取各项有效措施,改善外部操作环境,将液化气收率控制在目标值范围内。

案例二:轿车生产和GDP等关系研究

中国的轿车生产是否和GDP、城镇居民人均可支配收入、城镇居民家庭恩格尔系数、私人载客汽车拥有量、公路里程等都有密切关系?如果有关系,它们之间是种什么关系?关系强度如何?(数据见《中国统计年鉴》)

(1)分析轿车生产量和私人载客汽车拥有量之间的关系:

首先,求的因变量轿车生产量y和自变量私人载客汽车拥有量x1的相关系数r=0.992018,说明两者间存在一定的线性相关关系且正相关程度很强。

然后以轿车生产量为因变量y,私人载客汽车拥有量x1为自变量进行一元线性回归分析,结果如下:

①由回归统计中的R=0.984101看出,所建立的回归模型对样本观测值的拟合程度很好;

②估计出的样本回归函数为:ŷ=1.775687+0.206783x1,说明私人载客汽车拥有量每增加1万辆,轿车生产量增加2067.83辆;

③由上表中â和βˆ的p值分别是0.709481543和6.60805E-15,显然â的p值大于显著性水平α=0.05,不能拒绝原假设α=0,而βˆ的p值远小于显著性水平α=0.05,拒绝原假设β=0,说明私人载客汽车拥有量对轿车生产量有显著影响。

(2)分析轿车生产量和城镇居民家庭恩格尔系数之间的关系:

首先,求的因变量轿车生产量y和自变量城镇居民家庭恩格尔系数x2的相关系数r=-0.77499,说明两者间存在一定的线性相关关系但负相关程度一般。

然后以轿车生产量为因变量y,城镇居民家庭恩格尔系数x2为自变量进行一元线性回归分析,结果如下:

由回归统计中的R=0.600608看出,所建立的回归模型对样本观测值的拟合程度一般,综合其相关系数值可知此二者关系不太符合所建立的线性模型,说明二者间没有密切的线性相关关系。

(3)分析轿车生产量和公路里程之间的关系:

首先,求的因变量轿车生产量y和自变量公路里程x3的相关系数r=0.941214,说明两者间存在一定的线性相关关系且正相关程度较强。

然后以轿车生产量为因变量y,公路里程x3为自变量进行一元线性回归分析,结果如下:

①由回归统计中的R=0.885883看出,所建立的回归模型对样本 …… 此处隐藏:3377字,全部文档内容请下载后查看。喜欢就下载吧 ……

统计学案例——相关回归分析.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219