高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

时间:2025-07-07

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

§2.2 直线、平面平行的判定及其性质(练习)

学习目标:

1. 熟练掌握直线与平面、平面与平面平行的判定定理和性质定理,能合理选用其证明平行关系;

2. 熟练掌握线线、线面、面面之间的相互转化关系.

.

课前预习

(预习教材P 54~ P63,找出疑惑之处)

复习1:直线与平面、平面与平面平行的判定定理和性质定理分别是什么?

复习2:线线平行、线面平行、面面平行相互之间的转化图为:

面面平行

课内探究

例1 如图9-1,在正方体中,,,,E F G H 分别为BC ,,,CC C D A A ''''的中点.求证: ⑴BF ∥HD ';

⑵EG ∥BB D D ''平面;

⑶BDF 平面∥B D H ''平面. 图9-1

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

例2 如图9-2,在四棱锥O ABCD -中,底面ABCD 是菱形,M 为OA 的中点,N 为BC 的中点, 证明:直线MN OCD 平面‖

图9-2

小结:判断某一平行的过程就是从一平行关系出发不断转化的过程.通常经历线线平行到线面平行,线面平行到面面平行,最后又回到线线平行这一过程,

归根结底还是线线平行.

※ 动手试试

练1. 如图9-3,直线,,AA BB CC '''相交于点O ,AO =A O ',BO B O '=,CO C O '=,

求证:平面ABC ∥平面A B C '''

.

图9-3

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

练2. 如图9-4,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在中间和左边画出(单位:cm

BC ',⑴证明:BC '∥面EFG ;⑵求多面体体积.

图9-4

练3. 如图9-5,α∥β∥γ,直线a 与b 分别交α,β,γ于点,,A B C 和点,,D E F ,求证:

AB DE BC EF

=.

图9-5

E D

A

C F

G B ' C ' D '

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

当堂检测

1. 下列条件能推出平面α∥平面β的是( ).

A.存在一条直线a ,a ∥α,a ∥β

B.存在一条直线a ,a α⊂,a ∥β

C.存在两条平行直线,a b ,,a b αβ⊂⊂,a ∥β,b ∥α

D. 存在两条异面直线,a b ,,a b αβ⊂⊂,a ∥β,b ∥α

2. 设,a b 为两条直线,,αβ为两个平面,下列三个结论正确的有( )个.

①若,a b 与α所成的角相等,则a ∥b

②若a ∥α,b ∥β,α∥β,则a ∥b

③若,a b αβ⊂⊂,a ∥b ,则α∥β

A.0

B.1

C.2

D.3

3. AB 和CD 是夹在平行平面,αβ间的两条异面线段,,E F 分别是它们的中点,则EF 和α( ).

A.平行

B.相交

C.垂直

D.不能确定

4. 在由正方体棱的中点组成的直线中,和正方体的一个对角面平行的直线有_______条.

5. ,a b αβ⊂⊂,试在横线上写出条件,使得a ∥b .____________________________________

课后反思

线面平行、面面平行判定定理和性质定理的熟练运用;平行关系的熟练转化.

知识拓展

在立体几何中,证明图形的存在性或唯一性时,常常运用反证法和同一法.

反证法:先提出和原命题中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果,这样就否定了原来的假定而肯定原命题.

同一法:欲证图形有某种特性时,可另作一个具有同样特征的图形,再证明所作图形和已知条件中的图形是同一个.如果不是同一个,则与某公理或定理相矛盾.

课后训练

1. 如图9-6,四边形ABCD 是矩形,,E F 是AB 、PD 的中点,求证:AF ∥面PCE .

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2

图9-6

2. 如图9-7,在正三棱柱中,E是的AC中点,求证:AB'∥面BEC'.

高中数学《§2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219