高三文科基本函数复习测试题
时间:2026-01-19
时间:2026-01-19
绝密★启用前
A.(-3,0] B.(-3,1]
高三基本初等函数测试
本试卷满分150分,考试时间120分钟。 姓名:___________ 得分:______________
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] 8. 已知g(x 2) 2x 3,则g(x)等于( )
A.2x 1 B. 2x 1 C. 2x 3 D.2x 7 9. 函数y x2 4x 3,x 0,3 的值域是( )
A. 0,3 B. 1,0 C. 1,3 D. 0,2
第I卷(选择题 共50分)
一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,
只有一项是符合题意的.
10. 若x R,n N*,定义En
x x(x 1)(x 2)
(x n 1),
1.下列各组对象: ①接近于0的数的全体;
例如:E4 ( 4) ( 3) ( 2) ( 1) 24则f(x) x E5
4x 2的奇偶性为( )
A.偶函数不是奇函数 B.奇函数不是偶函数 ②比较小的正整数全体;
C.既是奇函数又是偶函数 D.非奇非偶函数
③平面上到点O的距离等于1的点的全体; 第II卷(非选择题 共30分)
④正三角形的全体; 二、填空题:(本大题共6小题,每小题5分,共30分,把答案写在题中
的横线上)
⑤2的近似值的全体. 11.
2+mx+n=0(m,n∈R)的解集为{-2,-1},则m=______,n=______.
12. 其中能构成集合的组数有( ) A.2组
B.3组
C.4组
D.5组
13. 设方程x2 mx 1 0的两根为 , ,且0 1,1 2,则实数m的取值范围
2.已知集合U {1,2,3,4},集合A={1,2},B={2,3},则ð是
U(AB) ( )
14. 设集合M ,m ,P x|x 1,x R ,若M
P ,则实数m的取值范围
A.{1,3,4} B.{3,4} C.{3} D.{4}
是
3. 设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=( )
15. 已知函数f(x)的定义域为 0,2 ,则f(x2 1)的定义域为______ ___ A.[-4,+∞) B.(-2, +∞) C.[-4,1] D.(-2,1] 4.“x=3”是“x2=9”的( )
16.已知函数f(x)为奇函数,且当x>0时, f(x) =x2+ ,则f(-1)= (A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件 三、解答题:本大题共70分.解答应写出必要的文字说明、证明过程及演算步骤. 5.“(2x 1)x 0”是“x 0”的( )
17.(10分)已知集合A={x|ax2-3x+2=0},其中a为常数,且a∈R (A)充分不必要条件 (B)必要不充分条件
①若A是空集,求a的范围; (C)充分必要条件 (D)既不充分也不必要条件 ②若A中只有一个元素,求a的值;
6. 已知a,b,c是实数,则下列命题为真命题的是( ) (A)“a b”是“a2
b2
”的充分条件 (B)“a b”是“a2
b2
”的必要条件 ③若A中至多只有一个元素,求a的范围.
(C)“a b”是“ac2 bc2”的必要条件 (D)“a b”是“|a| |b|”的充要条件
7. 函数f(x)
的定义域为( ).
共4页 第1页 共4页 第2页
1
18. (10分)利用单调函数的定义证明:函数f(x) x
19.(10分)已知y f(x)是定义在( , )上的偶函数,当x 0时, f(x) x2 2x 3。 (1)用分段函数形式写出y f(x)的解析式; (2)用对称性画出函数的图象; (3)写出y f(x)的单调区间; (4)求出函数的最值。
20. (10分)设函数f(x) x2 4x 5, (1)在区间[ 2,6]上画出函数f(x)的图像;
(2)设集合A xf(x) 5 ,B ( , 2] [0,4] [6, ).判断集合A和B之间的关系;
1 1
21. 已知f x x x x 0 ,⑴判断f x 的奇偶性; ⑵证明f x 0
2 12
3
在区间(0,)上是减函数. x
3 3 2
22. (10分)已知集合A= y|y=x-+1,x∈ 2 ,B={x|x+m2≥1}.
2 4
命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.
1
23. (10分)已知函数f(x)的定义域是(0, ),且满足f(xy) f(x) f(y),f() 1,
2
如果对于0 x y,都有f(x) f(y), (1)求f(1); (2)解不等式
f( x) f(3 x) 2.
共4页 第3页 共4页 第4页
2