MATLAB_智能算法30个案例分析 有目录(5)

发布时间:2021-06-05

XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换 X=XY(:,1);Y=XY(:,2);

ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值

[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群 XY=bs2rv(Chrom,FieldD);

gen=gen+1; %代计数器增加

%获取每代的最优解及其序号,Y为最优解,I为个体的序号 [Y,I]=max(ObjV);

trace(1:2,gen)=XY(I,:); %记下每代的最优值 trace(3,gen)=Y; %记下每代的最优值 end

plot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点 grid on;

plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群 hold off

%% 画进化图 figure(2);

plot(1:MAXGEN,trace(3,:)); grid on

xlabel('遗传代数') ylabel('解的变化') title('进化过程') bestZ=trace(3,end); bestX=trace(1,end); bestY=trace(2,end);

fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n'])

第 2 章 基于遗传算法和非线性规划的函数寻优算法

1.1案例背景 1.1.1 非线性规划方法

非线性规划是20世纪50年代才开始形成的一门新兴学科。1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩.塔克条件)的论文是非线性规划正式诞生的一个重要标志。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。非线性规划的一

MATLAB_智能算法30个案例分析 有目录(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219