The Open Reading Frame VI Product of Cauliflower mosaic viru(9)
发布时间:2021-06-05
发布时间:2021-06-05
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Figure6.PointMutationsintheInvariantSequenceI1ImpairP6–P6Interactions
Proteinextractsofbacteriaexpressingeitherwild-typeP6(laneP6),point-mutatedP6(laneP6m1),oranextractofbacteriatransformedwithemptyvector(laneE.coli)werefractionatedbySDS-PAGE(15%)andtransferredontoanitrocellulosemembrane.ThemembraneswereincubatedeitherwithantibodiesraisedagainstP6(rightpanel)orsubmittedtoafarproteingelblotassayusinginvitro32P-labeledP6(leftpanel).Molecularmassesofmarkerproteinsareindicatedtotheleft.
Therefore,immunolabelingwithanti-P6antibodieswasper-formedonpuri ednucleiisolatedfromhealthyandCaMV-infectedturnipprotoplasts;thenucleiwerealsostainedwithpropidiumiodide(Figures7Aand7B,panel2).Nucleipreparedfromhealthyplantsneverreactedwithanti-P6antibodies(Figure7A),whereas;50%ofthosefrominfectedplantswereimmu-nolabeled(Figure7B).P6-Alexa488 uorescentfociwereobservedinthenucleoplasmand/orthenucleolusfrominfectedturnipcells,thusdemonstratingthatP6moleculesdoindeedenterthenucleusduringtheCaMVinfectioncycle.ThenucleiwereoftencontaminatedwithP6-containingviroplasmsbe-causethelatterremained rmlyattachedtotheoutersurfaceevenwhentheywerefurtherpuri edthroughacompositesucrose/Percollgradient.Therefore,werealizedaseriesofphotographsobtainedbyCLSManalysisof0.5-mm-thicksec-tionsacrosspuri edandP6-immunolabelednuclei.AsshowninFigure7C,largecontaminatingviroplasmsprogressivelydisap-pearedfromviewinsuccessivesections(panels5to14),whereassmallP6-labeledaggregatesprogressivelyappearedwithintheorganelle(panels13to18),thusprovidingadditionalevidenceforthepresenceofP6withinthenucleus.The uores-centfocimightcorrespondtoP6aggregatesand/ortointer-actionsbetweenP6andspecializednuclearcompartmentssuchasspeckles(forareview,seeLamondandSpector,2003)orCajalbodies(Ochsetal.,1994).ThelocalizationofP6inthenucleolus,observedinsomecases,mightberelatedtoitscapacitytointeractwiththeribosomalsubunitsasshownbyParketal.(2001).
ToexcludethepossibilitythatP6enteredthenucleiduringtheirpuri cation(i.e.,bydiffusionthroughanalterednuclearenvelope),nucleifromhealthyprotoplastswereincubatedduring30minat48Cwith;100mgofsolubleP6proteinexpressedinE.coli.Thepreparationwasimmunolabeledasdescribeabove.No uorescencewasdetectablewithintheorganellesafterthistreatment,thusreinforcingourconclusionthattheP6proteinfoundinnucleifrominfectedcellsisactivelytransportedthereinthecourseoftheCaMVreplicationcycle.
CaMVP6IsaNucleocytoplasmicProtein935
Inconclusion,ourdataclearlysupporttheideathatP6canenterthenucleusduringviralinfectionandalsoindicatethatP6isanucleocytoplasmicshuttlingprotein.Furthermore,our ndingsalsostronglysuggestthatthesequencedownstreamofdomainAisimplicatedinthenuclearlocalizationofP6,whereastheN-terminalregionofP6mightcontainanuclearexportsignal(NES).
TheNTerminusofP6ContainsanNESThatIsRecognizedbytheCRM-1NuclearExportPathway
ThelatterhypothesisisreinforcedbythefactthatdeletionoftheconservedhydrophobicsequenceI1locatedinsubdomainA1ormutationoftheLeuresiduesatpositions14,16,and18partiallyabolishednuclearexportofP6(Figure5B,panels3to6).Moreover,thisLeu-richsequencebearssomeresemblancetotheNES(EKDTLLIDL)foundintheBR1proteinoftheSquashleafcurlvirus,ageminivirus(WardandLazarowitz,1999),andtotheNESsequenceofseveralknownrapidlyshuttlingnuclearpro-teins,suchasHIVRevprotein(forareview,seePollardandMalim,1998).
ToprovidefurtherevidencethattheaforesaidsequenceisanNES,wedeletedthesequenceI1ormutatedLeuresidues14,16,and18intheEGFP:Afusionprotein(Figure8A)asdescribedabove,andthebehaviorintobaccoBY-2cellsofthemutantswascomparedwiththatofthenonmutatedprotein.TheseexperimentswereperformedwithEGFP:Aratherthanwiththefull-lengthP6becausenuclearaccumulationofEGFP:Amutantswouldbedirectlyrelevanttotheimpairmentoftheexportprocess,whereastheaccumulationofEGFP:P6mutantsinthenucleusdoesnotpermitdiscriminationbetweenanexportdefectandanactiveimportoftheprotein.Indeed,thewild-typefusionproteinEGFP:Awasneverfoundinthenucleus,althoughitisofasizethatshouldpermitittodiffusefreelythroughthenuclearpore(Figure3B,panels3and4).
WhensequenceI1wasremovedfromdomainA,EGFP:ADI1wasequallydistributedinthecytoplasmandthenucleusexceptforthenucleolus(Figure8B,panels1and2),whereasEGFP:Alocalizedexclusivelytothecytoplasmiccompartment(Figure3B,panels3and4).ThesubcellularlocalizationinBY-2cellsofmutantEGFP:Am(Figure8B,panels3and4),inwhichthethreeLeuresiduesofI1werereplacedbypolarresidues,wassimilartothatobservedwithEGFP:ADI1(Figure8B,panels1and2);EGFP:Amwasfoundinboththecytoplasmandinthenucleusbutnotinthenucleolus.TheabsenceofbothEGFP:Amutantsinthenucleolus,incontrastwiththesituationwithEGFP:P6DI1andEGFP:P6pointmutatedversions(Figure5),mightbeduetothefactthattheN-terminalregionofP6isunabletointeractwithribosomalproteins,whereastheEGFP:P6mutantsstillcontainthecorrespondinginteractiondomains(i.e.,mini-TAVandRNAbindingdomainA)(Lehetal.,2000;Parketal.,2001;Bureauetal.,2004).
Alltheseresultssupportamodelinwhich(1)bothEGFP:AandEGFP:Amutantscanenterandexitthenucleusbydiffusion,(2)EGFP:AmoleculesbutneitherEGFP:ADI1norEGFP:Amarerapidlyexportedtothecytoplasm,and(3)thatthesequenceI1functionsasanNESbecausepointmutationsofLeuresiduesinI1impairtheexportofEGFP:A.Thus,theseLeuresidues
appear