抽屉原理教学案例 抽屉原理教学设计9篇(抽屉原理教案设计 小学)(7)

时间:2025-04-30

2.解决问题。

(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

(学生活动独立思考 自主探究)

(2)交流、说理活动。

师:谁能说说为什么?

生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

生2:我们也是这样想的。

生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。

师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。

师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)

师:同位之间再说一说,对这种方法的理解。

师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的理解

生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。

师:同学们都有这个发现吗?

生众:发现了。

师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本 余1本 (总有一个抽屉里至有3本书)

7本 2个 3本 余1本(总有一个抽屉里至有4本书)

9本 2个 4本 余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

52=2本1本(商加1)

72=3本1本(商加1)

92=4本1本(商加1)

师:观察板书你能发现什么?

生1:总有一个抽屉里的至少有2本只要用 商+ 1就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+ 2就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是商+1还是商+余数呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。

生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。

师:同学们同意吧?

师:同学们的这一发现,称为抽屉原理, 抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1, 而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为54=11

师:先验证一下你们的 …… 此处隐藏:237字,全部文档内容请下载后查看。喜欢就下载吧 ……

抽屉原理教学案例 抽屉原理教学设计9篇(抽屉原理教案设计 小学)(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219