Orthogonal polynomial method and odd vertices in matrix mode(10)
时间:2025-04-04
时间:2025-04-04
We show how to use the method of orthogonal polynomials for integrating, in the planar approximation, the partition function of one-matrix models with a potential with even or odd vertices, or any combination of them.
ORTHOGONALPOLYNOMIALMETHODANDODDVERTICES11su ces.Thequarticcasecanbeexplicitlyintegrated[1]toobtain
∞ 1(2k 1)!e
(g4)=(3g4)k(a 1)(a 9)=24k=1
1 12g4
(k+1)!(k 1)!.(41)
Recallingtheformulaforthetopologicalexpansion(5),onehastheinterestingequation
1(42)k!(k+2)!Gplanar,connected,withkquarticvertices
thatcanbecheckedfork=1andk=2usingthecontentsof gure2.Theradiusofconvergenceis1/12andg4c=1/12isthecriticalpoint.Forg4→g4coneobtainsthecriticalbehavior
e0(g4)~(g4c g4)5
=1 2g3AR
2g3R=A g3A2.
22g3x+σ(1+σ)(1+2σ)=0.(44)Infact,letusintroducethenewvariableσ= g3Arelatedtoxby(45)
2Thefunctionσ(x)=σ¯(g3x)isthesolutionof(45)whichvanishesfor
x=0;indeedwheng3=0thepotentialhasnolongeroddverticesandthenA(x)=0 σ¯(0)=0.Ourfunctione0(g3)mayberewritten,goingoverfromthevariablextothevariableσandintegratingbyparts
e0(g3)= 1
dx(1 x)ln
10 R(x)1+2σ(46)
= 3(1+σ1)(1+2σ1)2
下一篇:组织行为学 第二讲 知觉