An event-driven framework for the simulation of networks of(2)
发布时间:2021-06-11
发布时间:2021-06-11
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
Previousresearchhasproventhatsuchanevent-drivenapproachiswellsuitedtothesimulationoflargenetworksofspikingneurons,sinceitleadstofastsimulationswhilehandlingthedi culttaskofdealingwiththehighpreci-sionrequiredinthecomputationofspiketimes[7].However,theevent-drivensoftwaresimulatorsthathavebeendevelopedsofararespeci ctoparticularmodelsofneuronsornetworks.Forexample,theevent-drivensimulatorsin
[11,4,8,7]areratherdedicatedtointegrate-and- reneurons,theonein[1]isdedicatedtoneuronssimilartoautomatawitha nitenumberofstates.
Incontrast,weproposeinthispaperanevent-drivenframeworkinwhichtheneuronmodelsareonlylimitedbythefactthattheycanbeimplementedinanevent-drivenfashion.Thisencompassesalargeclassofspikingneuronsrang-ingfromusualleakyintegrate-and- reneuronstomoreabstractneurons,e.g.de nedascomplex nitestatemachines.Asaresult,theproposedframeworkfeaturesahighlevelof exibilitythatallowsthesimulationoflargenetworkscomposedofuniqueordi erenttypesofneurons.
2
2.1SpikingneuronmodelsAbstractneuronmodel
We rstneedtode neanabstractmodelofneuronstobeusedwithinourevent-drivenframework.Accordingtothebasicalgorithmdescribedabove,thefollowingrequirementsmustbeful lledbysuchaneuron:wemustknowhowitsinternalstateisa ectedbythereceptionofaspike,howitsinternalstateismodi edwhenemittingaspike,andwhenitsnext ringwilloccur. i},Wethereforede neanabstractmodelofneuronsasaset{xi,ri,si,twith
xi∈XisthestatevariableoftheneuronandXisagivenstatespace.Thisvariablecanchangeonlyatthetimesofsomeeventsoccuringinthesystem.
ri:X×S×R→Xisthefunctionthatdescribesthechangeofthestatevariabledrivenbythereceptionofapulsefromasynapses∈S,whereSisthesetofallsynapses,attimetr∈R.Wewillbemorespeci caboutthesynapsesinsection2.2.
si:X→Xcaracterizesthechangeofstatevariablecausedbythe ringoftheneuron(resetfunction).
i:X→R+∪{+∞}givesthetimeofthenext ring,giventhepresent t
statevariable,withtheadditionalhypothesisthatnoevent-drivenchangeofstatevariablewilloccuruntilthen.Weneedtoprovidethespecialvalue+∞asawaytosignifythatno ringcanoccurwithoutfurtherevents.
i’sto ndthenext ringeventpending.Thesimulationengineusesthet
This,togetherwithamethodtotakecareof(possiblydelayed)receptionevents
上一篇:《喜羊羊与灰太狼》后续
下一篇:企业培训系统解决方案