2013西北大学数学建模竞赛(陈思、李瑶、张瑜)(7)
时间:2025-07-07
时间:2025-07-07
日
[3] 蔡常峰,《数学模型建模分析》,科学出版社,1995 [4] 齐欢,《数学模型方法》,华中理工大学出版社,1996 [5] 白其岭,《数学建模案例分析》,海洋出版社,2000
八、附录
附录一:
表1 物资配送任务及其要求
表2 点对之间的公路里程(千米)
说明:qi为第i个客户所需要的物资重量(qi<8) Si为火车在第i个客户处的卸货时间
[ai,bi]为第i个客户要求的货车辆到达时间范围 附录二:
include<stdio.h>
{ float sum,M,cir,k; sum=0;
M=1000000; Inn=100: cir=8; K=2;
Gnmax=1000; Pm=0.8; Pc=o.2;
C[81]={0,40,60,75,90,200,100,160,80;40,0,65,40,100,50,75,110,100;60,65,0,75,100,100,75,75,75;75,40,75,0,100,50,90,90,150;90,100,100,100,0,100,75,75,100;200,50,100,50,100,0,70,90,75;100,75,75,90,75,70,0,70,100;160,110,75,90,75,90,70,0,100;80,100,75,100,75,100,100,0}; Q[8]={2 1.5 4.5 3 1.5 4 2.5 3} S[8]={1 2 1 3 2 2.5 3 0.8} A[8]={1 4 1 4 3 2 5 1.5} B[8]={4 6 2 7 5.5 5 8 4} }
{m=zeros(1,inn); m=m'; KM=cir+K-1;
s=zeros(inn,citynum+K-1); for i=1:1:inn
s(i,:)=randperm(KM); end s=[m s]; for i=1:inn for j=1:KM-1 if s(i,j)>cir s(i,j)=0; end end
end end }
Main() {
[f,p]=objf(s) gn=1;
while gn<gnmax+1 for j=1:2:inn seln=sell(s,ps); scro=cross(s,seln,pc); scnew(j,:)=scross(1,:); scnew(j+1,:)=scross(2,:);
smnew(j,:)=chang(scnew(j,:),pm); smnew(j+1,:)=chang(scnew(j+1,:),pm); end s=smnew;
[f,p]=objf(s,dislist); [fmax,nmax]=max(f); ymean(gn)=1/mean(f); ymax(gn)=1/fmax; x=s(nmax,:); gn=gn+1; %pause; end gn=gn-1; figure(2); end; }
{ y=zeros(citynum+1,citynum+1); for i=1:inn-1 a=s(i,:); for j=1:KM-1 m=a(j); n=a(j+1); m=m+1; n=n+1;