A Consensus Based Method for Tracking Modelling Background S
发布时间:2021-06-11
发布时间:2021-06-11
Modelling of the background (“uninteresting parts of the scene”), and of the foreground, play important roles in the tasks of visual detection and tracking of objects. This paper presents an effective and adaptive background modelling method for detectin
A Consensus Based Method for Tracking: Modelling
Background Scenario and Foreground Appearance
Hanzi Wang* and David Suter
Department of Electrical and Computer Systems Engineering
Monash University, Clayton Vic. 3800, Australia.
Abstract
Modelling of the background (“uninteresting parts of the scene”), and of the foreground, play important roles in the tasks of visual detection and tracking of objects. This paper presents an effective and adaptive background modelling method for detecting foreground objects in both static and dynamic scenes. The proposed method computes SAmple CONsensus (SACON) of the background samples and estimates a statistical model of the background, per pixel. SACON exploits both color and motion information to detect foreground objects. SACON can deal with complex background scenarios including non-stationary scenes (such as moving trees, rain, and fountains), moved/inserted background objects, slowly moving foreground objects, illumination changes etc.
However, it is one thing to detect objects that are not likely to be part of the background; it is another task to track those objects. Sample consensus is again utilized to model the appearance of foreground objects to facilitate tracking. This appearance model is employed to segment and track people through occlusions. Experimental results from several video sequences validate the effectiveness of the proposed method. * Corresponding author
Tel: +61-3-9905-5751; Fax: +61-3-9905-9602.
Email Address: (Hanzi Wang).
1
上一篇:Eenfowm英语口语情景对话
下一篇:门式起重机装拆安全施工方案