浙江省2012四校联考数学(理)答案及评分标准
时间:2025-05-10
时间:2025-05-10
2012届浙江省三校高三数学联考卷
数学(理)参考答案
一.选择题:
二.填空题:
11.2
12. 13.2 14.8 15.35 16.k 2 17. 3 b 2
2
三.解答题:
2an 11112 a 0, ,19.(本小题满分14分)(1) 由题意知n, an 13anan3an3
1an 1
1
1 112
, 1 ……………………………… 4分 1 3 a13 an
1 21
1 是首项为,公比为的等比数列;……………5分 所以数列
33 an 5 1
1 1 an 3 3 1
n 1
23
n
, an
3
n
n
3 2
……………………8分 1 1
1 t 3
1an 1
1an
n 1
(2)由(1)知由a1 0,an 1
1an 1
3an
1 11
, 1 1 1 3 anan
……………10分
2an 1
知an 0,故an 1 an得
……………11分
11111
即( 1)()n 1 ( 1)()n 1 1 得 1 0,又t 0,则0 t 1…………14分
t3t3t
1
20.(本小题满分14分)(1)∵AD // BC,BC=AD,Q为AD的中点,
2
∴四边形BCDQ为平行四边形,∴CD // BQ . ∵∠ADC=90° ∴∠AQB=90°
即QB⊥AD.
又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD. ∵BQ 平面PQB,
∴平面PQB⊥平面PAD. ……………………7分 另证:AD // BC,BC=
1
2
∴CD // BQ .∵ ∠ADC=90° ∴∠AQB=90°. ∵ PA=PD, ∴PQ⊥AD.
∵ PQ∩BQ=Q, ∴AD⊥平面PBQ. ∵ AD 平面PAD,
AD,Q为AD的中点, ∴ 四边形BCDQ为平行四边形,
∴平面PQB⊥平面PAD.……7分
(2)∵PA=PD,Q为AD的中点, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为n (0,0,1);
Q
(0,0,0),P
(0,,B
0),C( 0).
设M(x,y,z
),则PM (x,y,z
,
MC ( 1 xy, z),∵PM tMC,
t
x 1 t
x t( 1 x)
∴
y ty),∴
y ……………………12分
1 t
z t( z) z
1 t
在平面MBQ
中,QB (0,
0),QM (
t
1 t1 t1 t
,
∴ 平面MBQ
法向量为m 0,t).
n m
∵二面角M-BQ-C为30°,
cos30
nm
2
∴ t 3. ……………………14分 注:此小题若用几何法做也相应给分。
21. 解:解:(1)由题意,可设抛物线方程为y 2px p 0 . …………1分
2
由a2 b2 4 3 1,得c 1. …………2分
抛物线的焦点为 1,0 , p 2. …………3分
2
抛物线D的方程为y 4x. …………4分
(2)设A x1,y1 ,B x2,y2 . …………5分
i 直线l的方程为:y
x 4, …………6分
y x 4联立 2,整理得:x2 12x 16 0 …………7分
y 4x
AB=
(1 1)[ x1 x2 4x1x2 4
.…………9分
2
2
22. (1)当a 0时,f(x)
xlnx
,f (x)
lnx 1lnx
2
……………1分
当x e时,f (x) 0,所以f(x)在(e, )上是增函数 ……………4分 而3e 2e e 2e 1 e, f(3e) f(2e 1) ……………6分
(2)函数f(x)的图象总在函数F(x)的图象的上方等价于f(x) F(x)恒成立,
即
x alnx
在(0,1) (1, )上恒成立. ……………7分
x alnx
x a x
① 当0 x 1时,lnx 0,则
令g(x) x
xlnx
xlnx,g (x)
2x 2 lnx
2x 1x
,
x
再令h(x)
2x 2 lnx,h (x) ……………8分
当0 x 1时,h (x) 0,∴h(x)在(0,1)上递减,
∴ 当0 x 1时,h(x) h(1) 0, …………9分
∴g (x)
h(x)2x
0,所以g(x)在(0,1)上递增,g(x) g(1) 1,
∴ a 1 ……………10分
上一篇:流式细胞仪现状与临床应用进展
下一篇:公路施工述职报告