金融衍生品定价理论(期权定价)2
时间:2025-05-01
时间:2025-05-01
金融衍生品定价理论(期权定价)
金融衍生品定价理论(期权定价)
Chapter 2 Arbitrage-Free Principle
Robert C. Merton
金融衍生品定价理论(期权定价)
Financial Market Two Kinds of Assets Risk
free assetasset
Bond Stocks Options ….
Risky
Portfolio – an investment strategy to
hold different assets
金融衍生品定价理论(期权定价)
Investment At time 0, invest S
When t=T, Payoff = ST S0 Return = ( ST S0 ) / S0 For a risky asset, the return is uncertain,
i.e.,
S is a random variable
金融衍生品定价理论(期权定价)
A Portfolio a risk-free asset B
n risky assets
a portfolio B i Si ,i 1
Si Sit , i 1,...nn
, 1 ,... n is called a investment strategy on time t, wealth:
, i portion of the cor. Asset
Vt ( ) t t Bt it Siti 1
n
金融衍生品定价理论(期权定价)
Arbitrage Opportunity Self-financing - during [0, T]
no add or withdraw fund Arbitrage Opportunity - A self-financing investment,
T * (0, T ], s.t. V0 ( ) 0,VT * ( ) 0and Probability Prob VT * ( ) 0 0.
金融衍生品定价理论(期权定价)
Arbitrage Free Theorem Theorem 2.1 the market is arbitrage-free in time [0, T], 1 , 2 are any 2 portfolios satisfyingVT ( 1 ) VT ( 2 ),
& Prob{VT ( 1 ) VT ( 2 )} 0 t [0, T ),Vt ( 1 ) Vt ( 2 ).
金融衍生品定价理论(期权定价)
Proof of Theorem Suppose false, i.e., t * [0, T ), s.t.Vt* ( 1 ) Vt* ( 2 ) Denote E Vt ( 2 ) Vt ( 1 ) 0* *
B is a risk-free bond satisfying Bt* Vt* ( B) Construct a portfolio c at t t * c = 1 2 + E / Bt* B
Vt* ( c ) Vt* ( 1 ) Vt* ( 2 ) {E / Bt* }Vt* ( B) 0
金融衍生品定价理论(期权定价)
Proof of Theorem cont. r – risk free interest rate, at t=T
VT ( c ) VT ( 1 ) VT ( 2 ) {E / Bt* }VT ( B) Then * * VT ( B) Vt* ( B)[1 r (T - t )] Bt* [1 r (T - t )] From the supposition
VT ( c ) E[1 r (T t )] 0,*
金融衍生品定价理论(期权定价)
Proof of Theorem cont. It follows
Prob VT ( c ) 0 Prob VT ( 1 ) VT ( 2 ) 0 0 There is an Arbitrage Opportunity, Contradiction!
金融衍生品定价理论(期权定价)
Corollary 2.1 Market is arbitrage free
if portfolios 1 & 2
satisfying
VT ( 1 ) VT ( 2 ), then for any t [0, T ],
Vt ( 1 ) Vt ( 2 ).
金融衍生品定价理论(期权定价)
Proof of Corollary Consider c 1 2 B Then VT ( c ) VT ( B) 0
By Theorem, for t [0, T ],
Vt ( c ) Vt ( 1 ) Vt ( 2 ) Vt ( B) 0 Namely Vt ( 1 ) Vt ( 2 ) Vt ( B)
金融衍生品定价理论(期权定价)
Proof of Corollary 2.1 0, Vt ( 1 ) Vt ( 2 ). In the same wayVt ( 1 ) Vt ( 2 ) Then
Vt ( 1 ) Vt ( 2 ), t [0, T ] Corollary has been proved.
金融衍生品定价理论(期权定价)
Option Pricing European Option Pricing
Call-Put Parity for European Option American Option Pricing
Early Exercise for American Option Dependence of Option Pricing on the
Strike Price
金融衍生品定价理论(期权定价)
Assumptions1. The market is arbitrage-fre
e
2. All transactions are free of charge3. The risk-free interest rate r is a
constant 4. The underlying asset pays no dividends
金融衍生品定价理论(期权定价)
Notations St
ctpt Ct Pt
K T r
------ the risky asset price, ------ European call option price, ------ European put option price, ------ American call option price, ------ American put option price, ------ the option's strike price, ------ the option's expiration date, ------ the risk-free interest rate.
…… 此处隐藏:890字,全部文档内容请下载后查看。喜欢就下载吧 ……