直线与圆的极坐标方程
时间:2025-05-01
时间:2025-05-01
第三章 参数方程、极坐标教案 直线和圆的极坐标方程教案
教学目标
1.理解建立直线和圆的极坐标方程的关键是将已知条件表示成ρ与θ之间的关系式.2.初步掌握求曲线的极坐标方程的应用方法和步骤.
3.了解在极坐标系内,一个方程只能与一条曲线对应,但一条曲线即可与多个方程对应.
教学重点与难点
建立直线和圆的极坐标方程.
教学过程
师:前面我们学习了极坐标系的有关概念,了解到极坐标系是不同于直角坐标系的另一种坐标系,那么在极坐标系下可以解决点的轨迹问题吗?
问题:求过定圆内一定点,且与定圆相切的圆的圆心的轨迹方程.
师:探求轨迹方程的前提是在坐标系下,请你据题设先合理地建立一个坐标系.(巡视后,选定两个做示意图,(如图3-8,图3-9),画在黑板上.
)
解 设定圆半径为R,A(m,0),轨迹上任一点P(x,y)(或P(ρ,θ)).(1)在直角坐标系下:|ρA|=R-|Oρ|,
(两边再平方,学生都感到等式的右边太繁了.)
师:在直角坐标系下,求点P的轨迹方程的化简过程很麻烦.我们看在极坐标系下会如何呢?
(2)在极坐标系下:在△AOP中
|AP|2=|OA|2+|OP|2-2|OA|·|OP|·cosθ,
即(R-ρ)2=m2+ρ2-2mρ·cosθ.
化简整理,得
2mρ·cosθ-2Rρ=m2-R2,
师:对比两种解法可知,有些轨迹问题在极坐标系下解起来反而简
坐标方程有什么不同呢?这就是今天这节课的讨论内容.
一、曲线的极坐标方程的概念
师:在直角坐标系中,曲线用含有变量x和y的方程f(x,y)=0表示.那么在极坐标系中,曲线用含有变量ρ和θ的方程f(ρ,θ)=0来表示,也就是说方程f(ρ,θ)=0应称为极坐标方程,如上面问题中的:ρ
=
(投影)
定义:一般地,在直角坐标系中,如果曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
1.曲线上的点的坐标都是这个方程的解;
2.以这个方程的解为坐标的点都是曲线上的点.
那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
师:前面的学习知道,坐标(ρ,θ)只与一个点M对应,但反过来,点M的极坐标都不止一个.推而广之,曲线上的点的极坐标有无穷多个.这无穷多个极坐标都能适合方程f(ρ,θ)=吗?如曲线ρ=θ上有一点(π,π),它的另一种形式(-π,0)就不适合ρ=θ方程,这就是说点(π,π)适合方程,但点(π,π)的另一种表示方法(-π,0)就不适合.而(-π,0)不适合方程,它表示的点却在曲线ρ=θ上.因而在定义曲线的极坐标方程时,会与曲线的直角坐标方程有所不同.
(先让学生参照曲线的直角坐标方程的定义叙述曲线的极坐标方程的定义,再修正,最后打出投影:曲线的极坐标方程的定义)
曲线的极坐标方程定义:
如果极坐标系中的曲线C和方程f(ρ,0)=0之间建立了如下关系:
1.曲线C上任一点的无穷多个极坐标中至少有一个适合方程f(ρ,θ)=0;
2.坐标满足f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.
师:下面我们学习最简单的曲线:直线和圆的极坐标方程.
求直线和圆的极坐标方程的方法和步骤应与求直线和圆的直角坐标方程的方法和步骤类似,关键是将已知条件表示成ρ和θ之间的关系式.
解 设M(ρ,θ)为射线上任意一点,
因为∠xOM=θ,
师:过极点的射线的极坐标方程的形式你能归纳一下吗?
生:是.
师:一条曲线可与多个方程对应.这是极坐标方程的一个特点.你能猜想一下过极点的直线的极坐标方程是什么形式吗?
学生讨论后,得出:θ=θ0(θ0是倾斜角,ρ∈R)是过极点的直线的极坐标方
程.师:把你认为在极坐标系下,有特殊位置的直线都画出来.
例2 求适合下列条件的极坐标方程:
(1)过点A(3,π)并和极轴垂直的直线;
解 (1)设M(ρ,θ)是直线上一点(如图3-15),
即ρcosθ=-3为所示.
解 (2)设M(ρ,θ)是直线上一点,
过M作MN⊥Ox于N,
则|MN|是点B到Ox的距离,
师:不过极点也不垂直极轴、不平行极轴的直线的极坐标方程如何确立呢? 例3 求极坐标平面内任意位置上的一条直线l的极坐标方程(如图3-17,图3-18).
让学生根据以上两个图形讨论确定l的元素是什么?
结论直线l的倾斜角α,极点到直线l的距离|ON|可确定直线l的位置.
解设直线l与极轴的夹角为α,极点O到直线l的距离为p(极点O到直线l的距离是唯一的定值,故α、p都是常数).
直线l上任一点M(ρ,θ),则在Rt△MNO中|OM|·sin∠OMN=|ON|, 即ρsin(α-θ)=p为直线l的极坐标方程.(如图3-19,图
3-20)
师:直线的极坐标方程的一般式:ρsin(α-θ)=p,其中α是直线的倾斜角,p是极点到l的距离,当α、p取什么值时,直线的位置是特殊情形呢?
当α=π时,ρsinθ=p,直线平行极轴;
当p=0时,θ=α,是过极点的直线.
师:以上我们研究了极坐标系内的直线的极坐标方程.在极坐标系中的圆的方程如何确立呢?如图3-21:
圆上任一点M(r,θ),即指θ∈R时圆上任一点到极点的距离总是 …… 此处隐藏:965字,全部文档内容请下载后查看。喜欢就下载吧 ……
下一篇:非酒精性脂肪肝诊治指南